Nothing
#' @title Stan Code for Bayesian models
#'
#' @description \code{stancode} is a generic function that can be used to
#' generate Stan code for Bayesian models. Its original use is
#' within the \pkg{brms} package, but new methods for use
#' with objects from other packages can be registered to the same generic.
#'
#' @param object An object whose class will determine which method to apply.
#' Usually, it will be some kind of symbolic description of the model
#' form which Stan code should be generated.
#' @param formula Synonym of \code{object} for use in \code{make_stancode}.
#' @param ... Further arguments passed to the specific method.
#'
#' @return Usually, a character string containing the generated Stan code.
#' For pretty printing, we recommend the returned object to be of class
#' \code{c("character", "brmsmodel")}.
#'
#' @details
#' See \code{\link[brms:stancode.default]{stancode.default}} for the default
#' method applied for \pkg{brms} models.
#' You can view the available methods by typing: \code{methods(stancode)}
#' The \code{make_stancode} function is an alias of \code{stancode}.
#'
#' @seealso
#' \code{\link{stancode.default}}, \code{\link{stancode.brmsfit}}
#'
#' @examples
#' stancode(rating ~ treat + period + carry + (1|subject),
#' data = inhaler, family = "cumulative")
#'
#' @export
stancode <- function(object, ...) {
UseMethod("stancode")
}
#' @rdname stancode
#' @export
make_stancode <- function(formula, ...) {
# became an alias of 'stancode' in 2.20.14
stancode(formula, ...)
}
#' Stan Code for \pkg{brms} Models
#'
#' Generate Stan code for \pkg{brms} models
#'
#' @inheritParams brm
#' @param object An object of class \code{\link[stats:formula]{formula}},
#' \code{\link{brmsformula}}, or \code{\link{mvbrmsformula}} (or one that can
#' be coerced to that classes): A symbolic description of the model to be
#' fitted. The details of model specification are explained in
#' \code{\link{brmsformula}}.
#' @param ... Other arguments for internal usage only.
#'
#' @return A character string containing the fully commented \pkg{Stan} code
#' to fit a \pkg{brms} model. It is of class \code{c("character", "brmsmodel")}
#' to facilitate pretty printing.
#'
#' @examples
#' stancode(rating ~ treat + period + carry + (1|subject),
#' data = inhaler, family = "cumulative")
#'
#' stancode(count ~ zAge + zBase * Trt + (1|patient),
#' data = epilepsy, family = "poisson")
#'
#' @export
stancode.default <- function(object, data, family = gaussian(),
prior = NULL, autocor = NULL, data2 = NULL,
cov_ranef = NULL, sparse = NULL,
sample_prior = "no", stanvars = NULL,
stan_funs = NULL, knots = NULL,
drop_unused_levels = TRUE,
threads = getOption("brms.threads", NULL),
normalize = getOption("brms.normalize", TRUE),
save_model = NULL, ...) {
object <- validate_formula(
object, data = data, family = family,
autocor = autocor, sparse = sparse,
cov_ranef = cov_ranef
)
bterms <- brmsterms(object)
data2 <- validate_data2(
data2, bterms = bterms,
get_data2_autocor(object),
get_data2_cov_ranef(object)
)
data <- validate_data(
data, bterms = bterms,
data2 = data2, knots = knots,
drop_unused_levels = drop_unused_levels
)
bframe <- brmsframe(bterms, data)
prior <- .validate_prior(
prior, bframe = bframe,
sample_prior = sample_prior
)
stanvars <- validate_stanvars(stanvars, stan_funs = stan_funs)
threads <- validate_threads(threads)
.stancode(
bframe, prior = prior, stanvars = stanvars, threads = threads,
normalize = normalize, save_model = save_model, ...
)
}
# internal work function of 'stancode.default'
# @param parse parse the Stan model for automatic syntax checking
# @param backend name of the backend used for parsing
# @param silent silence parsing messages
.stancode <- function(bterms, prior, stanvars, threads = threading(),
normalize = getOption("brms.normalize", TRUE),
parse = getOption("brms.parse_stancode", FALSE),
backend = getOption("brms.backend", "rstan"),
silent = TRUE, save_model = NULL, ...) {
normalize <- as_one_logical(normalize)
parse <- as_one_logical(parse)
backend <- match.arg(backend, backend_choices())
silent <- as_one_logical(silent)
scode_predictor <- stan_predictor(
bterms, prior = prior, normalize = normalize,
stanvars = stanvars, threads = threads
)
scode_re <- stan_re(
bterms, prior = prior, threads = threads, normalize = normalize
)
scode_Xme <- stan_Xme(
bterms, prior = prior, threads = threads, normalize = normalize
)
# extend Stan's likelihood part
if (use_threading(threads)) {
# threading is activated
for (i in seq_along(scode_predictor)) {
resp <- usc(names(scode_predictor)[i])
pll_args <- stan_clean_pll_args(
scode_predictor[[i]][["pll_args"]],
scode_re[["pll_args"]],
scode_Xme[["pll_args"]],
collapse_stanvars_pll_args(stanvars)
)
partial_log_lik <- paste0(
scode_predictor[[i]][["pll_def"]],
scode_predictor[[i]][["model_def"]],
collapse_stanvars(stanvars, "likelihood", "start"),
scode_predictor[[i]][["model_comp_basic"]],
scode_predictor[[i]][["model_comp_eta_basic"]],
scode_predictor[[i]][["model_comp_eta_loop"]],
scode_predictor[[i]][["model_comp_dpar_link"]],
scode_predictor[[i]][["model_comp_dpar_trans"]],
scode_predictor[[i]][["model_comp_mix"]],
scode_predictor[[i]][["model_comp_arma"]],
scode_predictor[[i]][["model_comp_catjoin"]],
scode_predictor[[i]][["model_comp_mvjoin"]],
scode_predictor[[i]][["model_log_lik"]],
collapse_stanvars(stanvars, "likelihood", "end")
)
partial_log_lik <- gsub(" target \\+=", " ptarget +=", partial_log_lik)
partial_log_lik <- paste0(
"// compute partial sums of the log-likelihood\n",
"real partial_log_lik", resp, "_lpmf(array[] int seq", resp,
", int start, int end", pll_args$typed, ") {\n",
" real ptarget = 0;\n",
" int N = end - start + 1;\n",
partial_log_lik,
" return ptarget;\n",
"}\n"
)
partial_log_lik <- wsp_per_line(partial_log_lik, 2)
scode_predictor[[i]][["partial_log_lik"]] <- partial_log_lik
static <- str_if(threads$static, "_static")
scode_predictor[[i]][["model_lik"]] <- paste0(
" target += reduce_sum", static, "(partial_log_lik", resp, "_lpmf",
", seq", resp, ", grainsize", pll_args$plain, ");\n"
)
str_add(scode_predictor[[i]][["tdata_def"]]) <- glue(
" array[N{resp}] int seq{resp} = sequence(1, N{resp});\n"
)
}
scode_predictor <- collapse_lists(ls = scode_predictor)
scode_predictor[["model_lik"]] <- paste0(
scode_predictor[["model_no_pll_def"]],
scode_predictor[["model_no_pll_comp_basic"]],
scode_predictor[["model_no_pll_comp_mvjoin"]],
scode_predictor[["model_lik"]]
)
str_add(scode_predictor[["fun"]]) <-
" #include 'fun_sequence.stan'\n"
str_add(scode_predictor[["data"]]) <-
" int grainsize; // grainsize for threading\n"
} else {
# threading is not activated
scode_predictor <- collapse_lists(ls = scode_predictor)
scode_predictor[["model_lik"]] <- paste0(
scode_predictor[["model_no_pll_def"]],
scode_predictor[["model_def"]],
collapse_stanvars(stanvars, "likelihood", "start"),
scode_predictor[["model_no_pll_comp_basic"]],
scode_predictor[["model_comp_basic"]],
scode_predictor[["model_comp_eta_basic"]],
scode_predictor[["model_comp_eta_loop"]],
scode_predictor[["model_comp_dpar_link"]],
scode_predictor[["model_comp_dpar_trans"]],
scode_predictor[["model_comp_mix"]],
scode_predictor[["model_comp_arma"]],
scode_predictor[["model_comp_catjoin"]],
scode_predictor[["model_no_pll_comp_mvjoin"]],
scode_predictor[["model_comp_mvjoin"]],
scode_predictor[["model_log_lik"]],
collapse_stanvars(stanvars, "likelihood", "end")
)
}
scode_predictor[["model_lik"]] <-
wsp_per_line(scode_predictor[["model_lik"]], 2)
# get all priors added to 'lprior'
scode_tpar_prior <- paste0(
scode_predictor[["tpar_prior"]],
scode_re[["tpar_prior"]],
scode_Xme[["tpar_prior"]]
)
# generate functions block
scode_functions <- paste0(
"// generated with brms ", utils::packageVersion("brms"), "\n",
"functions {\n",
scode_predictor[["fun"]],
scode_re[["fun"]],
collapse_stanvars(stanvars, "functions"),
scode_predictor[["partial_log_lik"]],
"}\n"
)
# generate data block
scode_data <- paste0(
"data {\n",
" int<lower=1> N; // total number of observations\n",
scode_predictor[["data"]],
scode_re[["data"]],
scode_Xme[["data"]],
" int prior_only; // should the likelihood be ignored?\n",
collapse_stanvars(stanvars, "data"),
"}\n"
)
# generate transformed parameters block
scode_transformed_data <- paste0(
"transformed data {\n",
scode_predictor[["tdata_def"]],
collapse_stanvars(stanvars, "tdata", "start"),
scode_predictor[["tdata_comp"]],
collapse_stanvars(stanvars, "tdata", "end"),
"}\n"
)
# generate parameters block
scode_parameters <- paste0(
scode_predictor[["par"]],
scode_re[["par"]],
scode_Xme[["par"]]
)
# prepare additional sampling from priors
scode_rngprior <- stan_rngprior(
tpar_prior = scode_tpar_prior,
par_declars = scode_parameters,
gen_quantities = scode_predictor[["gen_def"]],
special_prior = attr(prior, "special"),
sample_prior = get_sample_prior(prior)
)
scode_parameters <- paste0(
"parameters {\n",
scode_parameters,
scode_rngprior[["par"]],
collapse_stanvars(stanvars, "parameters"),
"}\n"
)
# generate transformed parameters block
scode_lprior_def <- " real lprior = 0; // prior contributions to the log posterior\n"
scode_transformed_parameters <- paste0(
"transformed parameters {\n",
scode_predictor[["tpar_def"]],
scode_re[["tpar_def"]],
scode_Xme[["tpar_def"]],
str_if(normalize, scode_lprior_def),
collapse_stanvars(stanvars, "tparameters", "start"),
scode_predictor[["tpar_prior_const"]],
scode_re[["tpar_prior_const"]],
scode_Xme[["tpar_prior_const"]],
scode_predictor[["tpar_comp"]],
scode_predictor[["tpar_special_prior"]],
scode_re[["tpar_comp"]],
scode_Xme[["tpar_comp"]],
# lprior cannot contain _lupdf functions in transformed parameters
# as discussed on github.com/stan-dev/stan/issues/3094
str_if(normalize, scode_tpar_prior),
collapse_stanvars(stanvars, "tparameters", "end"),
"}\n"
)
# combine likelihood with prior part
not_const <- str_if(!normalize, " not")
scode_model <- paste0(
"model {\n",
str_if(!normalize, scode_lprior_def),
collapse_stanvars(stanvars, "model", "start"),
" // likelihood", not_const, " including constants\n",
" if (!prior_only) {\n",
scode_predictor[["model_lik"]],
" }\n",
" // priors", not_const, " including constants\n",
str_if(!normalize, scode_tpar_prior),
" target += lprior;\n",
scode_predictor[["model_prior"]],
scode_re[["model_prior"]],
scode_Xme[["model_prior"]],
stan_unchecked_prior(prior),
collapse_stanvars(stanvars, "model", "end"),
"}\n"
)
# generate generated quantities block
scode_generated_quantities <- paste0(
"generated quantities {\n",
scode_predictor[["gen_def"]],
scode_re[["gen_def"]],
scode_Xme[["gen_def"]],
scode_rngprior[["gen_def"]],
collapse_stanvars(stanvars, "genquant", "start"),
scode_predictor[["gen_comp"]],
scode_re[["gen_comp"]],
scode_rngprior[["gen_comp"]],
scode_Xme[["gen_comp"]],
collapse_stanvars(stanvars, "genquant", "end"),
"}\n"
)
# combine all elements into a complete Stan model
scode <- paste0(
scode_functions,
scode_data,
scode_transformed_data,
scode_parameters,
scode_transformed_parameters,
scode_model,
scode_generated_quantities
)
scode <- expand_include_statements(scode)
if (parse) {
scode <- parse_model(scode, backend, silent = silent)
}
# if (backend == "cmdstanr") {
# if (requireNamespace("cmdstanr", quietly = TRUE) &&
# cmdstanr::cmdstan_version() >= "2.29.0") {
# tmp_file <- cmdstanr::write_stan_file(scode)
# scode <- .canonicalize_stan_model(tmp_file, overwrite_file = FALSE)
# }
# }
if (is.character(save_model)) {
cat(scode, file = save_model)
}
class(scode) <- c("character", "brmsmodel")
scode
}
#' @export
print.brmsmodel <- function(x, ...) {
cat(x)
invisible(x)
}
#' Extract Stan code from \code{brmsfit} objects
#'
#' Extract Stan code from a fitted \pkg{brms} model.
#'
#' @param object An object of class \code{brmsfit}.
#' @param version Logical; indicates if the first line containing the \pkg{brms}
#' version number should be included. Defaults to \code{TRUE}.
#' @param regenerate Logical; indicates if the Stan code should be regenerated
#' with the current \pkg{brms} version. By default, \code{regenerate} will be
#' \code{FALSE} unless required to be \code{TRUE} by other arguments.
#' @param threads Controls whether the Stan code should be threaded. See
#' \code{\link{threading}} for details.
#' @param backend Controls the Stan backend. See \code{\link{brm}} for details.
#' @param ... Further arguments passed to
#' \code{\link[brms:stancode.default]{stancode}} if the Stan code is
#' regenerated.
#'
#' @return Stan code for further processing.
#'
#' @export
stancode.brmsfit <- function(object, version = TRUE, regenerate = NULL,
threads = NULL, backend = NULL, ...) {
if (is.null(regenerate)) {
# determine whether regenerating the Stan code is required
regenerate <- FALSE
cl <- match.call()
if ("threads" %in% names(cl)) {
threads <- validate_threads(threads)
if (use_threading(threads) && !use_threading(object$threads) ||
!use_threading(threads) && use_threading(object$threads)) {
# threading changed; regenerated Stan code
regenerate <- TRUE
}
object$threads <- threads
}
if ("backend" %in% names(cl)) {
backend <- match.arg(backend, backend_choices())
# older Stan versions do not support array syntax
if (require_old_stan_syntax(object, backend, "2.29.0")) {
regenerate <- TRUE
}
object$backend <- backend
}
}
regenerate <- as_one_logical(regenerate)
if (regenerate) {
object <- restructure(object)
out <- make_stancode(
formula = object$formula,
data = object$data,
prior = object$prior,
data2 = object$data2,
stanvars = object$stanvars,
sample_prior = get_sample_prior(object$prior),
threads = object$threads,
backend = object$backend,
...
)
} else {
# extract Stan code unaltered
out <- object$model
}
if (!version) {
out <- sub("^[^\n]+[[:digit:]]\\.[^\n]+\n", "", out)
}
out
}
# expand '#include' and '#includeR' statements
# For '#include' this could also be done automatically by Stan at compilation time
# but would result in Stan code that is not self-contained until compilation
# @param model Stan code that may contain '#include' and '#includeR' statements
# @return Stan code with '#include' and '#includeR' statements expanded
expand_include_statements <- function(model) {
# '#include' statements will be replaced by the content of a file
path <- system.file("chunks", package = "brms")
includes <- unique(get_matches("#include '[^']+'", model))
files <- gsub("(#include )|(')", "", includes)
for (i in seq_along(includes)) {
code <- readLines(paste0(path, "/", files[i]))
code <- paste0(code, collapse = "\n")
pattern <- paste0(" *", escape_all(includes[i]))
model <- sub(pattern, code, model)
# remove all duplicated include statements
model <- gsub(pattern, "", model)
}
# '#includeR' statements will be replaced by the call to an R function
includes <- unique(get_matches("#includeR `[^`]+`", model))
calls <- gsub("(#includeR )|(`)", "", includes)
for (i in seq_along(includes)) {
code <- eval2(calls[i])
pattern <- paste0(" *", escape_all(includes[i]))
model <- sub(pattern, code, model)
# remove all duplicated include statements
model <- gsub(pattern, "", model)
}
model
}
# check if Stan code includes normalization constants
is_normalized <- function(stancode) {
!grepl("_lup(d|m)f\\(", stancode)
}
# Normalizes Stan code to avoid triggering refit after whitespace and
# comment changes in the generated code.
# In some distant future, StanC3 may provide its own normalizing functions,
# until then this is a set of regex hacks.
# @param x a string containing the Stan code
normalize_stancode <- function(x) {
x <- as_one_character(x)
# Remove single-line comments
x <- gsub("//[^\n\r]*[\n\r]", " ", x)
x <- gsub("//[^\n\r]*$", " ", x)
# Remove multi-line comments
x <- gsub("/\\*([^*]*(\\*[^/])?)*\\*/", " ", x)
# Standardize whitespace (including newlines)
x <- gsub("[[:space:]]+"," ", x)
trimws(x)
}
# check if the currently installed Stan version requires older syntax
# than the Stan version with which the model was initially fitted
require_old_stan_syntax <- function(object, backend, version) {
stopifnot(is.brmsfit(object))
isTRUE(
(object$backend == "rstan" && object$version$rstan >= version ||
object$backend == "cmdstanr" && object$version$cmdstan >= version) &&
(backend == "rstan" && utils::packageVersion("rstan") < version ||
backend == "cmdstanr" && cmdstanr::cmdstan_version() < version)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.