R/poTest.R

Defines functions print.poTest poTest.polr poTest

Documented in poTest poTest.polr print.poTest

# added by J. Fox on 2017-10-14
# 2024-04-24: support polr models with weights (suggestion of Ken Beath), J. Fox

poTest <- function(model, ...){
    UseMethod("poTest")
}

poTest.polr <- function(model, ...){
  if (model$method != "logistic") 
    stop("test for proportional odds is only for the logistic model")
  X <- model.matrix(model)
  y <- model.response(model.frame(model))
  wt <- model.weights(model.frame(model))
  levels <- levels(y)
  k <- length(levels)
  p <- ncol(X) - 1
  y <- as.numeric(y)
  Beta <- matrix(0, p, k - 1)
  Fitted <- matrix(0, length(y), k - 1)
  for (j in 1:(k - 1)){
    model.j <- glm.fit(X, y > j, weights=wt, family=binomial())
    Beta[, j] <- coef(model.j)[-1]
    Fitted[, j] <- fitted(model.j)
  }
  vcov <- matrix(0, (k - 1)*p, (k - 1)*p)
  if (is.null(wt)) wt <- 1
  for (el in 1:(k - 1)){
    for (j in 1:el){
      W.j.el <- (Fitted[, el] - Fitted[, j]*Fitted[, el])*wt
      W.el.el <- (Fitted[, el] - Fitted[, el]^2)*wt
      W.j.j <- (Fitted[, j] - Fitted[, j]^2)*wt
      V <- solve(t(X * W.j.j) %*% X) %*% (t(X * W.j.el) %*% X) %*% 
        solve(t(X * W.el.el) %*% X)
      subs.j <- (j - 1)*p + 1:p
      subs.el <- (el - 1)*p + 1:p
      vcov[subs.j, subs.el] <- vcov[subs.el, subs.j] <- V[-1, -1]
    }
  }
  beta <- as.vector(Beta) 
  D <- matrix(0, (k - 2)*p, (k - 1)*p)
  I <- diag(p)
  for (j in 1:(k - 2)){
    subs.j <- (j - 1)*p + 1:p
    subs.el <- j*p + 1:p
    D[subs.j, 1:p] <- I
    D[subs.j, subs.el] <- -I
  }
  chisq <- t(D %*% beta) %*% solve(D %*% vcov %*% t(D)) %*% (D %*% beta)
  df <- (k - 2)*p
  chisq.p <- numeric(p)
  zeros <- matrix(0, k - 2, (k - 1)*p)
  D.p <- vector(p, mode="list")
  for (i in 1:p){
    DD <- zeros
    j <- 1:(k - 2)
    DD[j, i] <- 1
    DD[cbind(j, j*p + i)] <- -1
    chisq.p[i] <- t(DD %*% beta) %*% solve(DD %*% vcov %*% t(DD)) %*% 
      (DD %*% beta)
    D.p[[i]] <- DD
  }
  b <- coef(model)
  coef.names <- names(b)
  b <- cbind(b, Beta)
  colnames(b) <- c("b[polr]", paste0("b[>", levels[1:(k - 1)], "]"))
  result <- list(call=getCall(model), coef.names=coef.names, b=b,
                 vcov=vcov, D=D, chisq=as.vector(chisq), df=df,
                 D.p=D.p, chisq.p=chisq.p, df.p = k - 2)
  class(result) <- "poTest"
  result
}

print.poTest <- function(x, digits=3, ...){
    cat("\nTests for Proportional Odds\n")
    print(x$call)
    cat("\n")
    names <- c("Overall", x$coef.names)
    chisq <- c(x$chisq, x$chisq.p)
    df <- c(x$df, rep(x$df.p, length(x$chisq.p)))
    pval <- pchisq(chisq, df, lower.tail=FALSE)
    table <- cbind(chisq, df, pval)
    colnames(table) <- c("Chisquare", "df", "Pr(>Chisq)")
    b <- x$b
    b <- rbind(rep(NA, ncol(b)), b)
    table <- cbind(b, table)
    rownames(table) <- names
    printCoefmat(table, P.values=TRUE, has.Pvalue=TRUE, tst.ind = ncol(b) + 1,
                 na.print="", digits=digits)
    invisible(x)
}

Try the car package in your browser

Any scripts or data that you put into this service are public.

car documentation built on Sept. 27, 2024, 9:06 a.m.