tests/testthat/test-calculus.R

context("calculus")

test_that("derivative", {
  skip_if_no_sympy()
  
  x <- symbol("x")
  y <- symbol("y")
  f <- 3*x^2 + x*y^2
  
  expect_equal(as.character(der(f, "x")), "6*x + y^2")
  expect_equal(as.character(der(f, x)), "6*x + y^2")
  
  expect_equal(as.character(der2(f, "x")), "6")
  expect_equal(as.character(der2(f, x)), "6")
  
  expect_equal(as.character(der(f, c("x", "y"))), "[6*x + y^2, 2*x*y]")
  expect_equal(as.character(der(f, c(x, y))), "[6*x + y^2, 2*x*y]")
  
  expect_match(as.character(der2(f, c("x", "y"))), 
               "[[6, 2*y], [2*y, 2*x]]", 
               fixed = TRUE)
  expect_match(as.character(der2(f, c(x, y))), 
               "[[6, 2*y], [2*y, 2*x]]", 
               fixed = TRUE)
  
  p <- as_sym(paste0("p", 1:3))
  y <- as_sym(paste0("y", 1:3))
  a <- as_sym("a")
  l <- sum(y*log(p))
  L <- -l + a*(sum(p) - 1)
  gL <- der(L, list(p, a)) 
  expect_match(as.character(gL), 
               "[a - y1/p1, a - y2/p2, a - y3/p3, p1 + p2 + p3 - 1]", 
               fixed = TRUE)
  
  
  expect_match(as.character(der(L, p)), 
               "[a - y1/p1, a - y2/p2, a - y3/p3]",
               fixed = TRUE)
  expect_match(as.character(der(L, list(p, a))), 
               "[a - y1/p1, a - y2/p2, a - y3/p3, p1 + p2 + p3 - 1]",
               fixed = TRUE)
  
  expect_match(as.character(der2(L, p)), 
               "[[y1/p1^2, 0, 0], [0, y2/p2^2, 0], [0, 0, y3/p3^2]]",
               fixed = TRUE)
  expect_match(as.character(der2(L, list(p, a))), 
               "[[y1/p1^2, 0, 0, 1], [0, y2/p2^2, 0, 1], [0, 0, y3/p3^2, 1], [1, 1, 1, 0]]",
               fixed = TRUE)
})

test_that("limit", {
  skip_if_no_sympy()
  
  x <- symbol("x")
  
  expect_equal(as.character(lim(sin(x)/x, "x", 0)), "1")
  expect_equal(as.character(lim(sin(x)/x, x, 0)), "1")
  expect_equal(as_expr(lim(sin(x)/x, "x", 0)), 1)
  expect_equal(as_expr(lim(sin(x)/x, x, 0)), 1)
  
  expect_equal(as.character(lim(1/x, "x", 0, dir = '+')), "Inf")
  expect_equal(as.character(lim(1/x, x, 0, dir = '+')), "Inf")
  expect_equal(as_expr(lim(1/x, "x", 0, dir = '+')), Inf)
  expect_equal(as_expr(lim(1/x, x, 0, dir = '+')), Inf)
  
  expect_equal(as.character(lim(1/x, "x", 0, dir = '-')), "-Inf")
  expect_equal(as.character(lim(1/x, x, 0, dir = '-')), "-Inf")
  expect_equal(as_expr(lim(1/x, "x", 0, dir = '-')), -Inf)
  expect_equal(as_expr(lim(1/x, x, 0, dir = '-')), -Inf)
  
  expect_equal(as.character(lim((1 + 1/x)^x, x, Inf)), "exp(1)")
  expect_equal(as_expr(lim((1 + 1/x)^x, x, Inf)), exp(1))
  expect_equal(as_expr(-lim((1 + 1/x)^x, x, Inf)), -exp(1))
  expect_equal(as_expr(2*lim((1 + 1/x)^x, x, Inf)), 2*exp(1))
  expect_equal(as_expr(2^lim((1 + 1/x)^x, x, Inf)), 2^exp(1))
  expect_equal(as_expr(lim((1 + 1/x)^x, x, Inf)^3), exp(1)^3)
  expect_equal(as_expr(2*lim((1 + 1/x)^x, x, Inf)^3), 2*exp(1)^3)
  
  a <- symbol("a")
  expect_equal(as.character(a*lim(sin(x)/x, "x", 0)), "a")
  expect_equal(as.character(a*lim(sin(x)/x, x, 0)), "a")
})

test_that("sum_", {
  skip_if_no_sympy()
  
  x <- symbol("x")
  s <- sum_(1/x, "x", 1, 10)
  
  expect_equal(as.character(s), "7381/2520")
  expect_equal(as_expr(s), sum(1/(1:10)))
               
  n <- symbol("n")
  s <- simplify(sum_(x, x, 1, n))
  expect_equal(as.character(s), "n*(n + 1)/2")
})

test_that("prod_", {
  skip_if_no_sympy()
  
  x <- symbol("x")
  p <- prod_(1/x, "x", 1, 10)
  
  expect_equal(as.character(p), "1/3628800")
  expect_equal(as_expr(p), prod(1/(1:10)))
})

test_that("int", {
  skip_if_no_sympy()
  
  x <- symbol("x")
  
  # Limits
  expect_equal(as.character(int(1/x, "x", 1, 10)), "log(10)")
  expect_equal(as.character(int(1/x, x, 1, 10)), "log(10)")
  
  i1 <- int(1/x, "x", 1, 10, doit = FALSE)
  expect_equal(as.character(i1), "Integral(1/x, (x, 1, 10))")
  expect_equal(tex(i1), "\\int\\limits_{1}^{10} \\frac{1}{x}\\, dx")
  expect_equal(as.character(doit(i1)), "log(10)")
  
  i1 <- int(1/x, x, 1, 10, doit = FALSE)
  expect_equal(as.character(i1), "Integral(1/x, (x, 1, 10))")
  expect_equal(tex(i1), "\\int\\limits_{1}^{10} \\frac{1}{x}\\, dx")
  expect_equal(as.character(doit(i1)), "log(10)")

  
  ## No limits
  z <- symbol('z')
  expect_equal(as.character(int(1/z, "z")), "log(z)")
  expect_equal(as.character(int(1/z, z)), "log(z)")
  
  i1 <- int(1/x, "x", doit = FALSE)
  expect_equal(as.character(i1), "Integral(1/x, x)")
  expect_equal(tex(i1), "\\int \\frac{1}{x}\\, dx")
  expect_equal(as.character(doit(i1)), "log(x)")
  
  i1 <- int(1/x, x, doit = FALSE)
  expect_equal(as.character(i1), "Integral(1/x, x)")
  expect_equal(tex(i1), "\\int \\frac{1}{x}\\, dx")
  expect_equal(as.character(doit(i1)), "log(x)")
})



test_that("taylor", {
  skip_if_no_sympy()
  
  x <- symbol("x")
  f <- cos(x)
  ft_with_O <- taylor(f, x0 = 0, n = 4+1)
  
  expect_equal(as.character(ft_with_O), "1 - x^2/2 + x^4/24 + O(x^5.0)")
  
  ft <- ft_with_O %>% drop_remainder()
  expect_equal(as.character(ft), "x^4/24 - x^2/2 + 1")
})

Try the caracas package in your browser

Any scripts or data that you put into this service are public.

caracas documentation built on Feb. 11, 2022, 9:07 a.m.