Nothing
#' At-risk-of-poverty rate
#'
#' Estimate the proportion of persons with income below the at-risk-of-poverty threshold.
#'
#' @param formula a formula specifying the income variable
#' @param design a design object of class \code{survey.design} or class \code{svyrep.design} from the \code{survey} library.
#' @param quantiles income quantile, usually .50 (median)
#' @param percent fraction of the quantile, usually .60
#' @param na.rm Should cases with missing values be dropped?
#' @param ... arguments passed on to `svyarpt`
#'
#' @details you must run the \code{convey_prep} function on your survey design object immediately after creating it with the \code{svydesign} or \code{svrepdesign} function.
#'
#' @return Object of class "\code{cvystat}", which are vectors with a "\code{var}" attribute giving the variance and a "\code{statistic}" attribute giving the name of the statistic.
#'
#' @author Djalma Pessoa and Anthony Damico
#'
#' @seealso \code{\link{svyarpt}}
#'
#' @references Guillaume Osier (2009). Variance estimation for complex indicators
#' of poverty and inequality. \emph{Journal of the European Survey Research
#' Association}, Vol.3, No.3, pp. 167-195,
#' ISSN 1864-3361, URL \url{https://ojs.ub.uni-konstanz.de/srm/article/view/369}.
#'
#' Jean-Claude Deville (1999). Variance estimation for complex statistics and estimators:
#' linearization and residual techniques. Survey Methodology, 25, 193-203,
#' URL \url{https://www150.statcan.gc.ca/n1/en/catalogue/12-001-X19990024882}.
#'
#' @keywords survey
#'
#' @examples
#'
#' library(survey)
#' library(laeken)
#' data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
#'
#' # linearized design
#' des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
#' des_eusilc <- convey_prep( des_eusilc )
#'
#' svyarpr( ~eqincome , design = des_eusilc )
#'
#' # replicate-weighted design
#' des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
#' des_eusilc_rep <- convey_prep( des_eusilc_rep )
#'
#' svyarpr( ~eqincome , design = des_eusilc_rep )
#'
#' \dontrun{
#'
#' # linearized design using a variable with missings
#' svyarpr( ~ py010n , design = des_eusilc )
#' svyarpr( ~ py010n , design = des_eusilc , na.rm = TRUE )
#' # replicate-weighted design using a variable with missings
#' svyarpr( ~ py010n , design = des_eusilc_rep )
#' svyarpr( ~ py010n , design = des_eusilc_rep , na.rm = TRUE )
#'
#' # database-backed design
#' library(RSQLite)
#' library(DBI)
#' dbfile <- tempfile()
#' conn <- dbConnect( RSQLite::SQLite() , dbfile )
#' dbWriteTable( conn , 'eusilc' , eusilc )
#'
#' dbd_eusilc <-
#' svydesign(
#' ids = ~rb030 ,
#' strata = ~db040 ,
#' weights = ~rb050 ,
#' data="eusilc",
#' dbname=dbfile,
#' dbtype="SQLite"
#' )
#'
#' dbd_eusilc <- convey_prep( dbd_eusilc )
#'
#' svyarpr( ~ eqincome , design = dbd_eusilc )
#'
#' dbRemoveTable( conn , 'eusilc' )
#'
#' dbDisconnect( conn , shutdown = TRUE )
#'
#' }
#'
#' @export
svyarpr <- function(formula, design, ...) {
if (length(attr(terms.formula(formula) , "term.labels")) > 1)
stop(
"convey package functions currently only support one variable in the `formula=` argument"
)
UseMethod("svyarpr", design)
}
#' @rdname svyarpr
#' @export
svyarpr.survey.design <-
function(formula,
design,
quantiles = 0.5,
percent = 0.6,
na.rm = FALSE,
...) {
if (is.null(attr(design, "full_design")))
stop(
"you must run the ?convey_prep function on your linearized survey design object immediately after creating it with the svydesign() function."
)
# if the class of the full_design attribute is just a TRUE, then the design is
# already the full design. otherwise, pull the full_design from that attribute.
if ("logical" %in% class(attr(design, "full_design")))
full_design <-
design
else
full_design <- attr(design, "full_design")
# domain
incvar <-
model.frame(formula, design$variables, na.action = na.pass)[[1]]
if (na.rm) {
nas <- is.na(incvar)
design <- design[!nas,]
if (length(nas) > length(design$prob))
incvar <- incvar[!nas]
else
incvar[nas] <- 0
}
if (is.null(names(design$prob)))
ind <-
as.character(seq(length(design$prob)))
else
ind <- names(design$prob)
w <- 1 / design$prob
N <- sum(w)
# if the class of the full_design attribute is just a TRUE, then the design is
# already the full design. otherwise, pull the full_design from that attribute.
if ("logical" %in% class(attr(design, "full_design")))
full_design <-
design
else
full_design <- attr(design, "full_design")
incvec <-
model.frame(formula, full_design$variables, na.action = na.pass)[[1]]
if (na.rm) {
nas <- is.na(incvec)
full_design <- full_design[!nas,]
if (length(nas) > length(full_design$prob))
incvec <- incvec[!nas]
else
incvec[nas] <- 0
}
if (is.null(names(full_design$prob)))
ncom <-
as.character(seq(length(full_design$prob)))
else
ncom <- names(full_design$prob)
wf <- 1 / full_design$prob
# VARDPOOR replication would not use this:
htot <- h_fun(incvar, w)
ARPT <-
svyarpt(
formula = formula,
design = full_design,
quantiles = quantiles,
percent = percent,
na.rm = na.rm,
...
)
arptv <- coef(ARPT)
arptlin <- attr(ARPT, "lin")
# value of arpr and first term of lin
poor <- incvar <= arptv
rval <- sum(poor * w) / N
if (sum(1 / design$prob == 0) > 0)
ID <- 1 * (1 / design$prob != 0)
else
ID <- 1 * (ncom %in% ind)
arpr1lin <- (1 / N) * ID * ((incvec <= arptv) - rval)
# VARDPOOR replication instead uses h for the domain sample:
# htot <- h_fun( incvar , w )
Fprime <-
densfun(
formula = formula,
design = design ,
arptv,
# VARDPOOR replication divides by the percent here:
# arptv/percent , # on the quantile, not the threshold (differs from Osier 2009)
h = htot,
FUN = "F",
na.rm = na.rm
)
# combine linearization terms
arprlin <- arpr1lin + Fprime * arptlin
# To understand why, notice that arpr1lin is the *domain* poverty rate
# assuming we know the poverty threshold, defined over the entire population.
# Now, Fprime works like a derivative of the *domain* poverty rate wrt the
# *full sample* estimated threshold.
# It "propagates" the uncertainty expressed in arptlin over to the arprlin.
#
# This highlights three issues:
# 1. The domain indicator should be used only for the domain poverty rate term,
# as observations outside the domain still influence the ARPT estimation.
# 2. Fprime should be computed on the domain sample, since we are
# interested in the impact on the domain poverty rate;
# 3. Fprime is the derivative wrt to the estimated threshold, not the
# estimated quantile.
#
# The issue on (3) is the reason why convey differs from vardpoor here.
variance <-
survey::svyrecvar(
arprlin / full_design$prob,
full_design$cluster,
full_design$strata,
full_design$fpc,
postStrata = full_design$postStrata
)
colnames(variance) <-
rownames(variance) <-
names(rval) <-
strsplit(as.character(formula)[[2]] , ' \\+ ')[[1]]
class(rval) <- c("cvystat" , "svystat")
attr(rval, "var") <- variance
attr(rval, "statistic") <- "arpr"
attr(rval, "lin") <- arprlin
rval
}
#' @rdname svyarpr
#' @export
svyarpr.svyrep.design <-
function(formula,
design,
quantiles = 0.5,
percent = 0.6,
na.rm = FALSE,
...) {
if (is.null(attr(design, "full_design")))
stop(
"you must run the ?convey_prep function on your replicate-weighted survey design object immediately after creating it with the svrepdesign() function."
)
# if the class of the full_design attribute is just a TRUE, then the design is
# already the full design. otherwise, pull the full_design from that attribute.
if ("logical" %in% class(attr(design, "full_design")))
full_design <-
design
else
full_design <- attr(design, "full_design")
df <- model.frame(design)
incvar <-
model.frame(formula, design$variables, na.action = na.pass)[[1]]
if (na.rm) {
nas <- is.na(incvar)
design <- design[!nas,]
df <- model.frame(design)
incvar <- incvar[!nas]
}
ws <- weights(design, "sampling")
df_full <- model.frame(full_design)
incvec <-
model.frame(formula, full_design$variables, na.action = na.pass)[[1]]
if (na.rm) {
nas <- is.na(incvec)
full_design <- full_design[!nas,]
df_full <- model.frame(full_design)
incvec <- incvec[!nas]
}
wsf <- weights(full_design, "sampling")
names(incvec) <- names(wsf) <- row.names(df_full)
ind <- row.names(df)
ComputeArpr <-
function(xf, wf, ind, quantiles, percent) {
thresh <- percent * computeQuantiles(xf, wf, p = quantiles)
sum((xf[ind] <= thresh) * wf[ind]) / sum(wf[ind])
}
rval <-
ComputeArpr(
xf = incvec,
wf = wsf,
ind = ind,
quantiles = quantiles,
percent = percent
)
wwf <- weights(full_design, "analysis")
qq <-
apply(wwf, 2, function(wi) {
names(wi) <- row.names(df_full)
ComputeArpr(incvec,
wi,
ind = ind,
quantiles = quantiles,
percent = percent)
})
if (anyNA(qq))
variance <- NA
else
variance <-
survey::svrVar(qq,
design$scale,
design$rscales,
mse = design$mse,
coef = rval)
variance <- as.matrix(variance)
colnames(variance) <-
rownames(variance) <-
names(rval) <-
strsplit(as.character(formula)[[2]] , ' \\+ ')[[1]]
class(rval) <- c("cvystat" , "svrepstat")
attr(rval, "var") <- variance
attr(rval, "statistic") <- "arpr"
rval
}
#' @rdname svyarpr
#' @export
svyarpr.DBIsvydesign <-
function (formula, design, ...) {
if (!("logical" %in% class(attr(design, "full_design")))) {
full_design <- attr(design , "full_design")
full_design$variables <-
getvars(
formula,
attr(design , "full_design")$db$connection,
attr(design , "full_design")$db$tablename,
updates = attr(design , "full_design")$updates,
subset = attr(design , "full_design")$subset
)
attr(design , "full_design") <- full_design
rm(full_design)
}
design$variables <-
getvars(
formula,
design$db$connection,
design$db$tablename,
updates = design$updates,
subset = design$subset
)
NextMethod("svyarpr", design)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.