R/survey_functions.R

Defines functions model.frame.svyrep.design model.frame.survey.design within_function_subset computeQuantiles

#' @importFrom stats approxfun coef deriv model.frame model.matrix na.pass printCoefmat qnorm terms terms.formula update weights formula weighted.mean model.matrix.lm
#' @importFrom methods is

# each of the functions below are from the survey library v3.30-3
# written by Thomas Lumley and copied here under the same GPL-3 license
# these functions were copied following the direction in this thread:
# https://stat.ethz.ch/pipermail/r-devel/2013-August/thread.html#67180

computeQuantiles <- function(xx, w, p) {

  if (any(is.na(xx)[w!=0]))
    return(NA * p)
  if (sum(w) == 0)
    return(NA)
  if ( any( w == 0 ) ) {
    xx <- xx[ w != 0 ]
    w <- w[ w != 0 ]
  }

  oo <- order(xx)
  cum.w <- cumsum(w[oo]) / sum(w)
  cdf <-
    approxfun(
      cum.w,
      xx[oo],
      method = "constant",
      f = 1,
      yleft = min(xx),
      yright = max(xx),
      ties = min
    )
  cdf(p)
}

checkConnection <-
  function (dbconnection, error = TRUE) {
    if (is(dbconnection, "DBIConnection")) {
      if (!DBI::dbIsValid(dbconnection))
        if (error)
          stop("Database connection is closed")
      else
        return(FALSE)
    } else {

    }
    invisible(TRUE)
  }

getvars <-
  function (formula,
            dbconnection,
            tables,
            db.only = TRUE,
            updates = NULL,
            subset = NULL) {
    checkConnection(dbconnection)
    if (is.null(formula))
      return(NULL)
    if (inherits(formula, "formula")) {
      var0 <- all.vars(formula)
    }
    else if (is.character(formula)) {
      var0 <- formula
    }
    else {
      return(formula)
    }
    infilter <- updatesInfilter(var0, updates)
    if (db.only) {
      in.db <- infilter$varlist
    }
    else {
      query <- sub("@tab@", tables, "select * from @tab@ limit 1")
      if (is(dbconnection, "DBIConnection"))
        oneline <- DBI::dbGetQuery(dbconnection, query)
      in.db <-
        infilter$varlist[infilter$varlist %in% names(oneline)]
    }
    query <- paste("select", paste(in.db, collapse = ", "), "from",
                   tables)

    df <- DBI::dbGetQuery(dbconnection, query)

    if (!is.null(subset))
      df <- df[subset, , drop = FALSE]
    df <- updatesOutfilter(df, var0, infilter$history, updates)
    is.string <- sapply(df, is.character)
    if (any(is.string)) {
      for (i in which(is.string))
        df[[i]] <- as.factor(df[[i]])
    }
    df
  }

updatesInfilter <-
  function (varlist, updates) {
    if (is.null(updates))
      return(list(varlist = varlist))
    n <- length(updates)
    v <- vector("list", n)
    for (i in n:1) {
      if (any(idx <- (varlist %in% names(updates[[i]])))) {
        v[[i]] <- varlist[idx]
        ups <- match(v[[i]], names(updates[[i]]))
        varlist <-
          unique(c(varlist[!idx], do.call(
            c, lapply(updates[[i]][ups],
                      "[[", "inputs")
          )))
      }
    }
    list(varlist = varlist, history = v)
  }

updatesOutfilter <-
  function (df, varlist, history, updates) {
    if (is.null(updates))
      return(df)
    if (all(sapply(history, length) == 0))
      return(df)
    n <- length(updates)
    for (i in 1:n) {
      if (mi <- length(history[[i]])) {
        outputs <- vector("list", mi)
        for (j in 1:mi) {
          idx.j <- match(history[[i]][j], names(updates[[i]]))
          outputs[[j]] <- eval(updates[[i]][[idx.j]]$expression,
                               df)
        }
        names(outputs) <- history[[i]]
        if (any(mod <- names(df) %in% names(outputs))) {
          df <- df[,!mod, drop = FALSE]
        }
        df <- cbind(df, outputs)
      }
    }
    df[, names(df) %in% varlist, drop = FALSE]
  }




# lumley's survey subset functions were not written
# to work inside of other survey functions,
# because each survey function is expected to getvars()
# for all necessary columns for the current analysis.
# therefore, if we need to `subset` within a function
# then we will need custom functions that preserve the
# additional columns with an extended getvars() call


# only defined for `survey.design` and `DBIsvydesign` objects
within_function_subset <-
  function(x, subset, ...) {
    UseMethod("within_function_subset", x)
  }
  
  
# within_function_subset for `survey.design` objects
# is the same as survey:::subset.survey.design
#' @method within_function_subset survey.design
#' @export
within_function_subset.survey.design <-
  function (x, subset, ...) {
    e <- substitute(subset)
    r <- eval(e, x$variables, parent.frame())
    r <- r & !is.na(r)
    x <- x[r,]
    x$call <- sys.call(-1)
    x
  }

# this is the edit that preserves getvars() columns
#' @method within_function_subset DBIsvydesign
#' @export
within_function_subset.DBIsvydesign <-
  function (x, subset, ...) {
    e <- substitute(subset)

    vars_to_keep <- unique(c(all.vars(e) , names(x$variables)))

    x$variables <-
      getvars(
        formula(paste("~", paste(
          vars_to_keep, collapse = "+"
        ))),
        x$db$connection,
        x$db$tablename,
        updates = x$updates,
        subset = x$subset
      )

    r <- eval(e, x$variables, parent.frame())
    r <- r & !is.na(r)
    x <- x[r,]
    x$call <- sys.call(-1)
    x
  }




#' @method model.frame survey.design
model.frame.survey.design <- function(formula, ..., drop = TRUE) {
  formula$variables
}

#' @method model.frame svyrep.design
model.frame.svyrep.design <- function(formula, ...) {
  formula$variables
}






# convey.design update method
#' @method update convey.design
#' @export
update.convey.design <-
  function (object, ...) {
    attr(object , "full_design") <-
      NextMethod("update" , attr(object , "full_design"))

    NextMethod("update", object)

  }

Try the convey package in your browser

Any scripts or data that you put into this service are public.

convey documentation built on Oct. 16, 2024, 5:10 p.m.