Nothing
#' Generalized Entropy Index Decomposition
#'
#' Estimates the group decomposition of the generalized entropy index
#'
#' @param formula a formula specifying the income variable
#' @param subgroup a formula specifying the group variable
#' @param design a design object of class \code{survey.design} or class \code{svyrep.design} from the \code{survey} library.
#' @param epsilon a parameter that determines the sensivity towards inequality in the top of the distribution. Defaults to epsilon = 1.
#' @param na.rm Should cases with missing values be dropped? Observations containing missing values in income or group variables will be dropped.
#' @param deff Return the design effect (see \code{survey::svymean})
#' @param linearized Should a matrix of linearized variables be returned
#' @param influence Should a matrix of (weighted) influence functions be returned? (for compatibility with \code{\link[survey]{svyby}})
#' @param return.replicates Return the replicate estimates?
#' @param ... future expansion
#'
#' @details you must run the \code{convey_prep} function on your survey design object immediately after creating it with the \code{svydesign} or \code{svrepdesign} function.
#'
#' This measure only allows for strictly positive variables.
#'
#' @return Object of class "\code{cvydstat}", which are vectors with a "\code{var}" attribute giving the variance-covariance matrix and a "\code{statistic}" attribute giving the name of the statistic.
#'
#' @author Guilherme Jacob, Djalma Pessoa and Anthony Damico
#'
#' @seealso \code{\link{svygei}}
#'
#' @references Anthony F. Shorrocks (1984). Inequality decomposition groups population subgroups.
#' \emph{Econometrica}, v. 52, n. 6, 1984, pp. 1369-1385.
#' DOI \doi{10.2307/1913511}.
#'
#' Martin Biewen and Stephen Jenkins (2002). Estimation of Generalized Entropy
#' and Atkinson Inequality Indices from Complex Survey Data. \emph{DIW Discussion Papers},
#' No.345,
#' URL \url{https://www.diw.de/documents/publikationen/73/diw_01.c.40394.de/dp345.pdf}.
#'
#' @keywords survey
#'
#' @examples
#' library(survey)
#' library(laeken)
#' data(eusilc) ; names( eusilc ) <- tolower( names( eusilc ) )
#'
#' # linearized design
#' des_eusilc <- svydesign( ids = ~rb030 , strata = ~db040 , weights = ~rb050 , data = eusilc )
#' des_eusilc <- convey_prep(des_eusilc)
#'
#' # replicate-weighted design
#' des_eusilc_rep <- as.svrepdesign( des_eusilc , type = "bootstrap" )
#' des_eusilc_rep <- convey_prep(des_eusilc_rep)
#'
#' # linearized design
#' svygeidec( ~eqincome , ~rb090 , subset( des_eusilc, eqincome > 0 ) , epsilon = 0 )
#' svygeidec( ~eqincome , ~rb090 , subset( des_eusilc, eqincome > 0 ) , epsilon = .5 )
#' svygeidec( ~eqincome , ~rb090 , subset( des_eusilc, eqincome > 0 ) , epsilon = 1 )
#' svygeidec( ~eqincome , ~rb090 , subset( des_eusilc, eqincome > 0 ) , epsilon = 2 )
#'
#' # replicate-weighted design
#' svygeidec( ~eqincome , ~rb090 , subset( des_eusilc_rep, eqincome > 0 ) , epsilon = 0 )
#' svygeidec( ~eqincome , ~rb090 , subset( des_eusilc_rep, eqincome > 0 ) , epsilon = .5 )
#' svygeidec( ~eqincome , ~rb090 , subset( des_eusilc_rep, eqincome > 0 ) , epsilon = 1 )
#' svygeidec( ~eqincome , ~rb090 , subset( des_eusilc_rep, eqincome > 0 ) , epsilon = 2 )
#'
#' \dontrun{
#'
#' # linearized design using a variable with missings
#' sub_des_eusilc <- subset(des_eusilc, py010n > 0 | is.na(py010n) )
#' svygeidec( ~py010n , ~rb090 , sub_des_eusilc , epsilon = 0 )
#' svygeidec( ~py010n , ~rb090 , sub_des_eusilc , epsilon = 0, na.rm = TRUE )
#' svygeidec( ~py010n , ~rb090 , sub_des_eusilc , epsilon = 1 )
#' svygeidec( ~py010n , ~rb090 , sub_des_eusilc , epsilon = 1, na.rm = TRUE )
#'
#' # replicate-weighted design using a variable with missings
#' sub_des_eusilc_rep <- subset(des_eusilc_rep, py010n > 0 | is.na(py010n) )
#' svygeidec( ~py010n , ~rb090 , sub_des_eusilc_rep , epsilon = 0 )
#' svygeidec( ~py010n , ~rb090 , sub_des_eusilc_rep , epsilon = 0, na.rm = TRUE )
#' svygeidec( ~py010n , ~rb090 , sub_des_eusilc_rep , epsilon = 1 )
#' svygeidec( ~py010n , ~rb090 , sub_des_eusilc_rep , epsilon = 1, na.rm = TRUE )
#'
#' # database-backed design
#' library(RSQLite)
#' library(DBI)
#' dbfile <- tempfile()
#' conn <- dbConnect( RSQLite::SQLite() , dbfile )
#' dbWriteTable( conn , 'eusilc' , eusilc )
#'
#' dbd_eusilc <-
#' svydesign(
#' ids = ~rb030 ,
#' strata = ~db040 ,
#' weights = ~rb050 ,
#' data="eusilc",
#' dbname=dbfile,
#' dbtype="SQLite"
#' )
#'
#' dbd_eusilc <- convey_prep( dbd_eusilc )
#'
#' # database-backed linearized design
#' svygeidec( ~eqincome , ~rb090 , subset(dbd_eusilc, eqincome > 0) , epsilon = 0 )
#' svygeidec( ~eqincome , ~rb090 , subset(dbd_eusilc, eqincome > 0) , epsilon = .5 )
#' svygeidec( ~eqincome , ~rb090 , subset(dbd_eusilc, eqincome > 0) , epsilon = 1 )
#' svygeidec( ~eqincome , ~rb090 , subset(dbd_eusilc, eqincome > 0) , epsilon = 2 )
#'
#' # database-backed linearized design using a variable with missings
#' sub_dbd_eusilc <- subset(dbd_eusilc, py010n > 0 | is.na(py010n) )
#' svygeidec( ~py010n , ~rb090 , sub_dbd_eusilc , epsilon = 0 )
#' svygeidec( ~py010n , ~rb090 , sub_dbd_eusilc , epsilon = 0, na.rm = TRUE )
#' svygeidec( ~py010n , ~rb090 , sub_dbd_eusilc , epsilon = .5 )
#' svygeidec( ~py010n , ~rb090 , sub_dbd_eusilc , epsilon = .5, na.rm = TRUE )
#' svygeidec( ~py010n , ~rb090 , sub_dbd_eusilc , epsilon = 1 )
#' svygeidec( ~py010n , ~rb090 , sub_dbd_eusilc , epsilon = 1, na.rm = TRUE )
#' svygeidec( ~py010n , ~rb090 , sub_dbd_eusilc , epsilon = 2 )
#' svygeidec( ~py010n , ~rb090 , sub_dbd_eusilc , epsilon = 2, na.rm = TRUE )
#'
#' dbRemoveTable( conn , 'eusilc' )
#'
#' dbDisconnect( conn , shutdown = TRUE )
#'
#' }
#'
#' @export
svygeidec <-
function(formula, subgroup, design, ...) {
if (length(attr(terms.formula(subgroup) , "term.labels")) > 1)
stop(
"convey package functions currently only support one variable in the `subgroup=` argument"
)
# if( 'epsilon' %in% names( list(...) ) && list(...)[["epsilon"]] < 0 ) stop( "epsilon= cannot be negative." )
UseMethod("svygeidec", design)
}
#' @rdname svygeidec
#' @export
svygeidec.survey.design <-
function (formula,
subgroup,
design,
epsilon = 1,
na.rm = FALSE,
deff = FALSE ,
linearized = FALSE ,
influence = FALSE ,
...) {
# collect data
incvar <-
model.frame(formula, design$variables, na.action = na.pass)[,]
grpvar <-
model.frame(subgroup,
design$variables,
na.action = na.pass ,
drop.unused.levels = TRUE)[,]
# check types
if (inherits(grpvar , "labelled")) {
stop("This function does not support 'labelled' variables. Try factor().")
}
# treat missing values
if (na.rm) {
nas <- (is.na(incvar) | is.na(grpvar))
design$prob <- ifelse( nas , Inf , design$prob )
}
# collect sampling weights
w <- 1 / design$prob
incvar <- ifelse( w == 0 , 0 , incvar )
# check for strictly positive incomes
if (any(incvar[w != 0] <= 0, na.rm = TRUE))
stop(
"The GEI indices are defined for strictly positive variables only.\nNegative and zero values not allowed."
)
# add interaction
grpvar <- interaction(grpvar)
# total
ttl.gei <- CalcGEI( incvar , w , epsilon )
# compute linearized function
ttl.lin <- CalcGEI_IF( incvar , w, epsilon )
# create matrix of group-specific weights
wg <-
sapply(levels(grpvar) , function(z)
ifelse(grpvar == z , w , 0))
# calculate group-specific GEI and linearized functions
grp.gei <- lapply(colnames(wg) , function(this.group) {
wi <- wg[, this.group]
statobj <- list(value = CalcGEI(incvar,
wi ,
epsilon) ,
lin = CalcGEI_IF(incvar,
wi ,
epsilon))
statobj
})
names(grp.gei) <- colnames(wg)
# calculate within component weight
grp.gei.wgt <- lapply(colnames(wg) , function(i) {
wi <- wg[, i]
if (epsilon == 0) {
this.linformula <- quote((N.g / N))
} else if (epsilon == 1) {
this.linformula <- quote((Y.g / Y))
} else {
this.linformula <-
substitute(quote(((Y.g / Y) ^ epsilon) * ((N.g / N) ^ (1 - epsilon))) , list(epsilon = epsilon))
this.linformula <- eval(this.linformula)
}
contrastinf(this.linformula ,
list(
Y.g = list(
value = sum(incvar * wi , na.rm = TRUE) ,
lin = incvar * (wi > 0)
) ,
Y = list(
value = sum(incvar * w , na.rm = TRUE) ,
lin = incvar * (w > 0)
) ,
N.g = list(value = sum(wi , na.rm = TRUE) , lin = (wi > 0)) ,
N = list(value = sum(w , na.rm = TRUE) , lin = (w > 0))
))
})
names(grp.gei.wgt) <- colnames(wg)
# calculate within component weight
gei.within.components <-
list(
value = sapply(grp.gei.wgt , `[[` , "value") * sapply(grp.gei , `[[` , "value") ,
lin = sweep(
sapply(grp.gei , `[[` , "lin") ,
2 ,
sapply(grp.gei.wgt , `[[` , "value") ,
"*"
) +
sweep(
sapply(grp.gei.wgt , `[[` , "lin") ,
2 ,
sapply(grp.gei , `[[` , "value") ,
"*"
)
)
# compute within component
wtn.gei <- sum(gei.within.components$value)
within.lin <- rowSums(gei.within.components$lin)
# between (residual)
btw.gei <- ttl.gei - wtn.gei
between.lin <- ttl.lin - within.lin
# create vector of estimates
estimates <- c(ttl.gei, wtn.gei, btw.gei)
names(estimates) <- c("total", "within", "between")
# create linearized matrix
lin.matrix <-
matrix(
data = c(ttl.lin, within.lin, between.lin),
ncol = 3,
dimnames = list(names(w) , c("total", "within", "between"))
)
rm(ttl.lin, within.lin, between.lin)
# compute variance
varest <-
survey::svyrecvar(
sweep(lin.matrix , 1 , w , "*") ,
design$cluster,
design$strata,
design$fpc,
postStrata = design$postStrata
)
varest[which(is.nan(varest))] <- NA
# compute deff
if (is.character(deff) || deff) {
nobs <- sum(weights(design) != 0)
npop <- sum(weights(design))
if (deff == "replace")
vsrs <-
survey::svyvar(lin.matrix , design, na.rm = na.rm) * npop ^ 2 / nobs
else
vsrs <-
survey::svyvar(lin.matrix , design , na.rm = na.rm) * npop ^ 2 * (npop - nobs) /
(npop * nobs)
deff.estimate <- varest / vsrs
}
# build result object
rval <- c(estimates)
attr(rval, "var") <- varest
attr(rval, "statistic") <- "gei decomposition"
attr(rval, "group") <- as.character(subgroup)[[2]]
attr(rval, "epsilon") <- epsilon
if (linearized)
attr(rval, "linearized") <- lin.matrix[w > 0 ,]
if (influence)
attr(rval , "influence") <-
sweep(lin.matrix , 1 , w , "*")
if (linearized |
influence)
attr(rval , "index") <- as.numeric(rownames(lin.matrix))[w > 0]
if (is.character(deff) ||
deff)
attr(rval , "deff") <- deff.estimate
class(rval) <- c("cvystat" , "svystat")
rval
}
#' @rdname svygeidec
#' @export
svygeidec.svyrep.design <-
function(formula,
subgroup,
design,
epsilon = 1,
na.rm = FALSE,
deff = FALSE ,
linearized = FALSE ,
return.replicates = FALSE ,
...) {
# between inequality function
fun.btw.gei <- function(y , w , grp , epsilon) {
y <- y[w > 0]
grp <- grp[w > 0]
w <- w[w > 0]
N <- sum(w)
Y <- sum(y * w)
mu <- Y / N
N.g <- tapply(w , grp , sum , na.rm = TRUE)
Y.g <- tapply(w * y , grp , sum , na.rm = TRUE)
mu.g <- Y.g / N.g
if (epsilon == 0) {
estimate <- -sum(N.g * log(mu.g / mu)) / N
} else if (epsilon == 1) {
estimate <- sum((Y.g / Y) * log(mu.g / mu))
} else {
estimate <-
sum((N.g / N) * ((mu.g / mu) ^ epsilon - 1)) / (epsilon ^ 2 - epsilon)
}
estimate
}
# within inequality function
fun.wtn.gei <- function(y , w , grp , epsilon) {
y <- y[w > 0]
grp <- grp[w > 0]
w <- w[w > 0]
N <- sum(w)
Y <- sum(y * w)
mu <- Y / N
N.g <- tapply(w , grp , sum , na.rm = TRUE)
Y.g <- tapply(w * y , grp , sum , na.rm = TRUE)
s.g <- Y.g / Y
p.g <- N.g / N
gei.g <-
sapply(levels(grp) , function(grpv)
CalcGEI(y , ifelse(grp == grpv , w , 0) , epsilon = epsilon))
if (epsilon == 0) {
estimate <- sum(p.g * gei.g)
} else if (epsilon == 1) {
estimate <- sum(s.g * gei.g)
} else {
estimate <- sum((s.g ^ epsilon) * (p.g ^ (1 - epsilon)) * gei.g)
}
estimate
}
# collect data
incvar <-
model.frame(formula, design$variables, na.action = na.pass)[,]
grpvar <-
model.frame(subgroup,
design$variables,
na.action = na.pass ,
drop.unused.levels = TRUE)[,]
# check types
if (inherits(grpvar , "labelled")) {
stop("This function does not support 'labelled' variables. Try factor().")
}
# treat missing values
if (na.rm) {
nas <- is.na(incvar) | is.na(grpvar)
design <- design[!nas,]
df <- model.frame(design)
incvar <-
model.frame(formula, design$variables, na.action = na.pass)[,]
grpvar <-
model.frame(
subgroup,
design$variables,
na.action = na.pass ,
drop.unused.levels = TRUE
)[,]
}
# collect samling weights
ws <- weights(design, "sampling")
# check for strictly positive incomes
if (any(incvar[ws != 0] <= 0 , na.rm = TRUE))
stop(
"The GEI indices are defined for strictly positive variables only.\nNegative and zero values not allowed."
)
# create interaction
grpvar <- interaction(grpvar)
# collect analysis weights
ww <- weights(design, "analysis")
qq.ttl.gei <-
apply(ww, 2, function(wi)
CalcGEI(incvar, wi, epsilon = epsilon))
### point estimates
# total inequality
ttl.gei <-
CalcGEI(incvar , ws , epsilon)
btw.gei <- fun.btw.gei(incvar , ws , grpvar , epsilon)
# wtn.gei <- fun.wtn.gei( incvar , ws , grpvar , epsilon )
wtn.gei <- ttl.gei - btw.gei
estimates <- c(ttl.gei, wtn.gei, btw.gei)
stopifnot(all.equal (fun.btw.gei(incvar , ws , grpvar , epsilon) , btw.gei , tolerance = 1e-10))
### variance estimation
# create matrix of replicates
qq <- apply(ww , 2 , function(wi) {
ttl.rep <- CalcGEI(incvar, wi , epsilon)
btw.rep <- fun.btw.gei(incvar , wi , grpvar , epsilon)
wtn.rep <- ttl.rep - btw.rep
c(ttl.rep , wtn.rep , btw.rep)
})
qq <- t(qq)
dimnames(qq) <- list(NULL, c("total", "within", "between"))
# compute variance
if (anyNA(qq)) {
varest <- diag(estimates)
varest[,] <- NA
} else {
varest <-
survey::svrVar(qq ,
design$scale,
design$rscales,
mse = design$mse,
coef = estimates)
}
# compute deff
if (is.character(deff) || deff || linearized) {
### compute linearization
# compute linearized function
ttl.lin <-
CalcGEI_IF(incvar , ws, epsilon)
# create matrix of group-specific weights
wg <-
sapply(levels(grpvar) , function(z)
ifelse(grpvar == z , ws , 0))
# calculate group-specific GEI and linearized functions
grp.gei <- lapply(colnames(wg) , function(this.group) {
wi <- wg[, this.group]
statobj <- list(value = CalcGEI(incvar , wi , epsilon) ,
lin = CalcGEI_IF(incvar , wi , epsilon))
statobj
})
names(grp.gei) <- colnames(wg)
# calculate within component weight
grp.gei.wgt <- lapply(colnames(wg) , function(i) {
wi <- wg[, i]
if (epsilon == 0) {
this.linformula <- quote((N.g / N))
} else if (epsilon == 1) {
this.linformula <- quote((Y.g / Y))
} else {
this.linformula <-
substitute(quote(((Y.g / Y) ^ epsilon) * ((N.g / N) ^ (1 - epsilon))) , list(epsilon = epsilon))
this.linformula <- eval(this.linformula)
}
contrastinf(this.linformula ,
list(
Y.g = list(
value = sum(incvar * wi , na.rm = TRUE) ,
lin = incvar * (wi > 0)
) ,
Y = list(
value = sum(incvar * ws , na.rm = TRUE) ,
lin = incvar * (ws > 0)
) ,
N.g = list(value = sum(wi , na.rm = TRUE) , lin = (wi > 0)) ,
N = list(value = sum(ws , na.rm = TRUE) , lin = (ws > 0))
))
})
names(grp.gei.wgt) <- colnames(wg)
# calculate within component weight
gei.within.components <-
list(
value = sapply(grp.gei.wgt , `[[` , "value") * sapply(grp.gei , `[[` , "value") ,
lin = sweep(
sapply(grp.gei , `[[` , "lin") ,
2 ,
sapply(grp.gei.wgt , `[[` , "value") ,
"*"
) +
sweep(
sapply(grp.gei.wgt , `[[` , "lin") ,
2 ,
sapply(grp.gei , `[[` , "value") ,
"*"
)
)
# compute within component
wtn.gei <- sum(gei.within.components$value)
within.lin <- rowSums(gei.within.components$lin)
# between (residual)
btw.gei <- ttl.gei - wtn.gei
between.lin <- ttl.lin - within.lin
# create vector of estimates
estimates <- c(ttl.gei, wtn.gei, btw.gei)
names(estimates) <- c("total", "within", "between")
# create linearized matrix
lin.matrix <-
matrix(
data = c(ttl.lin, within.lin, between.lin),
ncol = 3,
dimnames = list(names(ws) , c("total", "within", "between"))
)
### compute deff
nobs <- length(design$pweights)
npop <- sum(design$pweights)
vsrs <-
unclass(
survey::svyvar(
lin.matrix ,
design,
na.rm = na.rm,
return.replicates = FALSE,
estimate.only = TRUE
)
) * npop ^ 2 / nobs
if (deff != "replace")
vsrs <- vsrs * (npop - nobs) / npop
deff.estimate <- varest / vsrs
}
# build result object
rval <- estimates
names(rval) <- c("total", "within", "between")
attr(rval, "var") <- varest
attr(rval, "statistic") <- "gei decomposition"
attr(rval, "epsilon") <- epsilon
attr(rval, "group") <- as.character(subgroup)[[2]]
class(rval) <- c("cvystat" , "svrepstat" , "svystat")
if (linearized)
attr(rval, "linearized") <- lin.matrix
if (linearized)
attr(rval , "index") <- as.numeric(rownames(lin.matrix))
# keep replicates
if (return.replicates) {
attr(qq , "scale") <- design$scale
attr(qq , "rscales") <- design$rscales
attr(qq , "mse") <- design$mse
rval <- list(mean = rval , replicates = qq)
}
# add design effect estimate
if (is.character(deff) ||
deff)
attr(rval , "deff") <- deff.estimate
# retorna objeto
class(rval) <- c("cvystat" , "svrepstat" , "svystat")
rval
}
#' @rdname svygeidec
#' @export
svygeidec.DBIsvydesign <-
function (formula, subgroup, design, ...) {
design$variables <-
cbind(
getvars(
formula ,
design$db$connection ,
design$db$tablename ,
updates = design$updates ,
subset = design$subset
),
getvars(
subgroup ,
design$db$connection ,
design$db$tablename ,
updates = design$updates ,
subset = design$subset
)
)
NextMethod("svygeidec", design)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.