tests/testthat/test-extract-svyrich-FGTT1.R

skip_on_cran()

# load libraries
library(survey)
library(laeken)
# library( vardpoor )

# loop through g and threshold type
for (this.threshold in c("abs", "relq", "relm"))
  for (this.g in c(0, 1))  {
    # return test context
    context(
      paste0(
        "svyrich-" ,
        this.threshold ,
        " FGTT1 g=",
        this.g ,
        " output survey.design and svyrep.design"
      )
    )

    ### test 1: test if funtion works on unweighted objects

    # load data
    data("api")

    # set up convey design
    expect_warning(dstrat1 <-
                     convey_prep(svydesign(id =  ~ 1, data = apistrat)))

    # perform tests
    test_that(paste0("svyrich g=", this.g , " works on unweighted designs"), {
      expect_false(is.na (coef(
        svyrich(
          ~ api00,
          design = dstrat1 ,
          g = this.g ,
          abs_thresh = 600 ,
          type_thresh = this.threshold ,
          type_measure = "FGTT1" ,
          deff = TRUE
        )
      )))
      expect_false(is.na (SE(
        svyrich(
          ~ api00,
          design = dstrat1 ,
          g = this.g ,
          abs_thresh = 600 ,
          type_thresh = this.threshold ,
          type_measure = "FGTT1" ,
          deff = TRUE
        )
      )))
    })

    ### test 2: income data from eusilc --- data.frame-backed design object

    # collect and format data
    data(eusilc)
    names(eusilc) <- tolower(names(eusilc))

    # set up survey design objects
    des_eusilc <-
      svydesign(
        ids = ~ rb030 ,
        strata = ~ db040 ,
        weights = ~ rb050 ,
        data = eusilc
      )
    des_eusilc_rep <-
      as.svrepdesign(des_eusilc , type = "bootstrap" , replicates = 50)

    # prepare for convey
    des_eusilc <- convey_prep(des_eusilc)
    des_eusilc_rep <- convey_prep(des_eusilc_rep)

    # calculate estimates
    a1 <-
      svyrich(
        ~ eqincome ,
        des_eusilc ,
        g = this.g ,
        abs_thresh = 20000 ,
        type_thresh = this.threshold ,
        type_measure = "FGTT1" ,
        deff = TRUE
      )
    a2 <-
      svyby(
        ~ eqincome ,
        ~ hsize,
        des_eusilc ,
        svyrich ,
        g = this.g ,
        abs_thresh = 20000 ,
        type_thresh = this.threshold ,
        type_measure = "FGTT1" ,
        deff = TRUE
      )
    b1 <-
      svyrich(
        ~ eqincome ,
        des_eusilc_rep ,
        g = this.g ,
        abs_thresh = 20000 ,
        type_thresh = this.threshold ,
        type_measure = "FGTT1" ,
        deff = TRUE
      )
    b2 <-
      svyby(
        ~ eqincome ,
        ~ hsize,
        des_eusilc_rep ,
        svyrich ,
        g = this.g ,
        abs_thresh = 20000 ,
        type_thresh = this.threshold ,
        type_measure = "FGTT1" ,
        deff = TRUE
      )

    # calculate auxilliary tests statistics
    cv_diff1 <- abs(cv(a1) - cv(b1))
    se_diff2 <- max(abs(SE(a2) - SE(b2)) , na.rm = TRUE)

    # perform tests
    test_that("output svyrich" , {
      expect_is(coef(a1) , "numeric")
      expect_is(coef(a2) , "numeric")
      expect_is(coef(b1) , "numeric")
      expect_is(coef(b2) , "numeric")
      expect_equal(coef(a1) , coef(b1))
      expect_equal(coef(a2) , coef(b2))
      # expect_lte( cv_diff1 , coef(a1) * 0.20 )         # the difference between CVs should be less than 5% of the coefficient, otherwise manually set it
      expect_lte(se_diff2 , max(coef(a2)) * 0.20)  # the difference between CVs should be less than 10% of the maximum coefficient, otherwise manually set it
      expect_is(SE(a1) , "matrix")
      expect_is(SE(a2) , "numeric")
      expect_is(SE(b1) , "numeric")
      expect_is(SE(b2) , "numeric")
      expect_lte(confint(a1)[1] ,  coef(a1))
      expect_gte(confint(a1)[2] , coef(a1))
      expect_lte(confint(b1)[, 1] , coef(b1))
      expect_gte(confint(b1)[2] , coef(b1))
      expect_equal(sum(confint(a2)[, 1] <= coef(a2)) , length(coef(a2)))
      expect_equal(sum(confint(a2)[, 2] >= coef(a2)) , length(coef(a2)))
      expect_equal(sum(confint(b2)[, 1] <= coef(b2)) , length(coef(b2)))
      expect_equal(sum(confint(b2)[, 2] >= coef(b2)) , length(coef(b2)))

    })

    ### test 2: income data from eusilc --- database-backed design object

    # perform tests
    test_that("database svyrich", {
      # skip test on cran
      skip_on_cran()

      # load libraries
      library(RSQLite)
      library(DBI)

      # set-up database
      dbfile <- tempfile()
      conn <- dbConnect(RSQLite::SQLite() , dbfile)
      dbWriteTable(conn , 'eusilc' , eusilc)

      # database-backed design
      dbd_eusilc <-
        svydesign(
          ids = ~ rb030 ,
          strata = ~ db040 ,
          weights = ~ rb050 ,
          data = "eusilc",
          dbname = dbfile,
          dbtype = "SQLite"
        )

      # prepare for convey
      dbd_eusilc <- convey_prep(dbd_eusilc)

      # calculate estimates
      c1 <-
        svyrich(
          ~ eqincome ,
          dbd_eusilc ,
          g = this.g ,
          abs_thresh = 20000 ,
          type_thresh = this.threshold ,
          type_measure = "FGTT1" ,
          deff = TRUE
        )
      c2 <-
        svyby(
          ~ eqincome ,
          ~ hsize,
          dbd_eusilc ,
          svyrich ,
          g = this.g ,
          abs_thresh = 20000 ,
          type_thresh = this.threshold ,
          type_measure = "FGTT1" ,
          deff = TRUE ,
          comvat = TRUE
        )

      # remove table and close connection to database
      dbRemoveTable(conn , 'eusilc')
      dbDisconnect(conn)

      # peform tests
      expect_equal(coef(a1) , coef(c1))
      expect_equal(coef(a2) , coef(c2))
      expect_equal(SE(a1) , SE(c1))
      expect_equal(SE(a2) , SE(c2))
      expect_equal(deff(a1) , deff(c1))
      expect_equal(deff(a2) , deff(c2))


    })

    ### test 3: compare subsetted objects to svyby objects

    # calculate estimates
    sub_des <-
      svyrich(
        ~ eqincome ,
        design = subset(des_eusilc , hsize == 1) ,
        g = this.g ,
        abs_thresh = 20000 ,
        type_thresh = this.threshold ,
        type_measure = "FGTT1" ,
        deff = TRUE
      )
    sby_des <-
      svyby(
        ~ eqincome,
        by = ~ hsize,
        design = des_eusilc,
        FUN = svyrich ,
        g = this.g ,
        abs_thresh = 20000 ,
        type_thresh = this.threshold ,
        type_measure = "FGTT1" ,
        deff = TRUE
      )
    sub_rep <-
      svyrich(
        ~ eqincome ,
        design = subset(des_eusilc_rep , hsize == 1) ,
        g = this.g ,
        abs_thresh = 20000 ,
        type_thresh = this.threshold ,
        type_measure = "FGTT1" ,
        deff = TRUE
      )
    sby_rep <-
      svyby(
        ~ eqincome,
        by = ~ hsize,
        design = des_eusilc_rep,
        FUN = svyrich ,
        g = this.g ,
        abs_thresh = 20000 ,
        type_thresh = this.threshold ,
        type_measure = "FGTT1" ,
        deff = TRUE
      )

    # perform tests
    test_that("subsets equal svyby", {
      # domain vs svyby: coefficients must be equal
      expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_des))[1])
      expect_equal(as.numeric(coef(sub_rep)) , as.numeric(coef(sby_rep))[1])

      # domain vs svyby: SEs must be equal
      expect_equal(as.numeric(SE(sub_des)) , as.numeric(SE(sby_des))[1])
      expect_equal(as.numeric(SE(sub_rep)) , as.numeric(SE(sby_rep))[1])

      # domain vs svyby: DEffs must be equal
      expect_equal(as.numeric(deff(sub_des)) , as.numeric(deff(sby_des))[1])
      expect_equal(as.numeric(deff(sub_rep)) , as.numeric(deff(sby_rep))[1])

      # domain vs svyby and svydesign vs svyrepdesign:
      # coefficients should match across svydesign
      expect_equal(as.numeric(coef(sub_des)) , as.numeric(coef(sby_rep))[1])

      # domain vs svyby and svydesign vs svyrepdesign:
      # coefficients of variation should be within five percent
      cv_diff <- abs(cv(sub_des) - cv(sby_rep)[1])
      expect_lte(cv_diff , .5)


    })

    ### test 4: compare subsetted objects to svyby objects

    # compare database-backed designs to non-database-backed designs
    test_that("dbi subsets equal non-dbi subsets", {
      # skip test on cran
      skip_on_cran()

      # load libraries
      library(RSQLite)
      library(DBI)

      # set up database
      dbfile <- tempfile()
      conn <- dbConnect(RSQLite::SQLite() , dbfile)
      dbWriteTable(conn , 'eusilc' , eusilc)

      # create database-backed design (with survey design information)
      dbd_eusilc <-
        svydesign(
          ids = ~ rb030 ,
          strata = ~ db040 ,
          weights = ~ rb050 ,
          data = "eusilc",
          dbname = dbfile,
          dbtype = "SQLite"
        )

      # create a hacky database-backed svrepdesign object
      # mirroring des_eusilc_rep
      dbd_eusilc_rep <-
        svrepdesign(
          weights = ~ rb050,
          repweights = attr(des_eusilc_rep , "full_design")$repweights ,
          scale = attr(des_eusilc_rep , "full_design")$scale ,
          rscales = attr(des_eusilc_rep , "full_design")$rscales ,
          type = "bootstrap" ,
          data = "eusilc" ,
          dbtype = "SQLite" ,
          dbname = dbfile ,
          combined.weights = FALSE
        )

      # prepare for convey
      dbd_eusilc <- convey_prep(dbd_eusilc)
      dbd_eusilc_rep <- convey_prep(dbd_eusilc_rep)

      # calculate estimates
      sub_dbd <-
        svyrich(
          ~ eqincome ,
          design = subset(dbd_eusilc , hsize == 1) ,
          g = this.g ,
          abs_thresh = 20000 ,
          type_thresh = this.threshold ,
          type_measure = "FGTT1" ,
          deff = TRUE
        )
      sby_dbd <-
        svyby(
          ~ eqincome,
          by = ~ hsize,
          design = dbd_eusilc,
          FUN = svyrich ,
          g = this.g ,
          abs_thresh = 20000 ,
          type_thresh = this.threshold ,
          type_measure = "FGTT1" ,
          deff = TRUE
        )
      sub_dbr <-
        svyrich(
          ~ eqincome ,
          design = subset(dbd_eusilc_rep , hsize == 1) ,
          g = this.g ,
          abs_thresh = 20000 ,
          type_thresh = this.threshold ,
          type_measure = "FGTT1" ,
          deff = TRUE
        )
      sby_dbr <-
        svyby(
          ~ eqincome,
          by = ~ hsize,
          design = dbd_eusilc_rep,
          FUN = svyrich ,
          g = this.g ,
          abs_thresh = 20000 ,
          type_thresh = this.threshold ,
          type_measure = "FGTT1" ,
          deff = TRUE
        )

      # remove table and disconnect from database
      dbRemoveTable(conn , 'eusilc')
      dbDisconnect(conn)

      # perform tests
      expect_equal(coef(sub_des) , coef(sub_dbd))
      expect_equal(coef(sub_rep) , coef(sub_dbr))
      expect_equal(SE(sub_des) , SE(sub_dbd))
      expect_equal(SE(sub_rep) , SE(sub_dbr))
      expect_equal(deff(sub_des) , deff(sub_dbd))
      expect_equal(deff(sub_rep) , deff(sub_dbr))
      expect_warning(expect_equal(vcov(sby_des) , vcov(sby_dbd)))
      expect_warning(expect_equal(vcov(sby_rep) , vcov(sby_dbr)))

      # compare database-backed subsetted objects to database-backed svyby objects
      # dbi subsets equal dbi svyby
      expect_equal(as.numeric(coef(sub_dbd)) , as.numeric(coef(sby_dbd))[1])
      expect_equal(as.numeric(coef(sub_dbr)) , as.numeric(coef(sby_dbr))[1])
      expect_equal(as.numeric(SE(sub_dbd)) , as.numeric(SE(sby_dbd))[1])
      expect_equal(as.numeric(SE(sub_dbr)) , as.numeric(SE(sby_dbr))[1])
      expect_equal(as.numeric(deff(sub_dbd)) , as.numeric(deff(sby_dbd))[1])
      expect_equal(as.numeric(deff(sub_dbr)) , as.numeric(deff(sby_dbr))[1])


    })

  }

Try the convey package in your browser

Any scripts or data that you put into this service are public.

convey documentation built on Oct. 16, 2024, 5:10 p.m.