Nothing
## Copyright (C) 2016 Marius Hofert, Ivan Kojadinovic, Martin Maechler, and Jun Yan
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
## FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## Khoudraji Copula
library(copula)
isExplicit <- copula:::isExplicit
(doExtras <- copula:::doExtras())
## if(!dev.interactive(orNone=TRUE)) pdf("khoudraji-ex.pdf")
################################################################################
## An explicit Khoudraji copula constructed from claytonCopula and indepCoula
## with one fixed shape parameter
kcf <- khoudrajiCopula(copula2 = claytonCopula(6),
shapes = fixParam(c(0.4, 0.95), c(FALSE, TRUE)))
kcf
stopifnot(
all.equal(getTheta(kcf, freeOnly = FALSE, named = TRUE) -> th.,
c(c2.alpha = 6, shape1 = 0.4, shape2 = 0.95)),
identical(getTheta(kcf, named = TRUE), th.[1:2]))
## kcf@exprdist$cdf
stopifnot(isExplicit(kcf))
set.seed(123)
u <- rCopula(20, kcf)
## cdf/pdf from explicit expression versus from algorithmic implementation
max(abs(pCopula(u, kcf) - copula:::pKhoudrajiCopula(u, kcf)))
max(abs(dCopula(u, kcf) - copula:::dKhoudrajiBivCopula(u, kcf)))
################################################################################
## A nested Khoudraji copula from kcf and a gumbelCopula, still explicit
k_kcf_g <- khoudrajiCopula(kcf, gumbelCopula(2),
shapes = fixParam(c(.2, .9), c(TRUE, TRUE)))
k_kcf_g
stopifnot(isExplicit(k_kcf_g))
getTheta(k_kcf_g, freeOnly = FALSE, named = TRUE)
getTheta(k_kcf_g, named = TRUE)
## k_kcf_g@exprdist$cdf
set.seed(456)
U <- rCopula(100000, k_kcf_g)
## check cdf/pdf with C.n and kde2d
require(MASS)
u <- as.matrix(expand.grid((1:9)/10, (1:9)/10))
## cdf versus C.n
max(abs(pCopula(u, k_kcf_g) - C.n(u, U))) ## < 0.0001)
## pdf versus kde2d
kde <- kde2d(U[,1], U[,2], n = 9, lims = c(0.1, 0.9, 0.1, 0.9))
max(abs(dCopula(u, k_kcf_g) / c(kde$z) - 1)) ## relative difference < 0.13
################################################################################
## one more nesting: kcf and k_kcf_g
monster <- khoudrajiCopula(kcf, k_kcf_g,
shapes = fixParam(c(.9, .1), c(TRUE, FALSE)))
monster; validObject(monster)
stopifnot(isExplicit(monster))
(th.mA <- getTheta(monster, freeOnly = FALSE, named = TRUE))
(th.m <- getTheta(monster, named = TRUE))
stopifnot(identical(th.m, th.mA[isFree(monster)]))
set.seed(488)
U <- rCopula(100000, monster)
## cdf versus C.n
max(abs(pCopula(u, monster) - C.n(u, U))) ## < 0.002)
## pdf versus kde2d
kde <- kde2d(U[,1], U[,2], n = 9, lims = c(0.1, 0.9, 0.1, 0.9))
max(abs(dCopula(u, monster) / c(kde$z) - 1)) ## relative difference < 0.09
################################################################################
## khoudrajiExplicitCopula with dim 3
kcd3 <- khoudrajiCopula(copula1 = indepCopula(dim=3),
copula2 = claytonCopula(6, dim=3),
shapes = c(0.4, 0.95, 0.95))
kcd3
stopifnot(isExplicit(kcd3),
inherits(kcd3, "khoudrajiExplicitCopula"))
set.seed(1712)
U <- rCopula(100000, kcd3)
u <- matrix(runif(15), 5, 3)
## cdf versus C.n
max(abs(pCopula(u, kcd3) - C.n(u, U))) # < 0.00007
## don't know how to check pdf
(f.v <- dCopula(u, kcd3))
stopifnot(
all.equal(f.v,
c(1.1116773, 1.6661734, 0.1719080, 0.4981574, 9.8964415),
tol = 1e-7)
)
kcg <- khoudrajiCopula(claytonCopula(2, dim=3), gumbelCopula(3, dim=3), c(0.2, 0.2, .8))
kcg
u <- rCopula(10, kcg)
dCopula(u, kcg)
kkcgg <- khoudrajiCopula(kcg, gumbelCopula(2, dim = 3), c(.3, .3, .9))
kkcgg
u <- rCopula(10, kkcgg)
dCopula(u, kkcgg)
kcgcd3 <- khoudrajiCopula(kcd3, kkcgg, c(.4, .4, .5))
kcgcd3
u <- rCopula(10, kcgcd3)
dCopula(u, kcgcd3)
##--- or use comparederiv() from ../inst/Rsource/utils.R via source(..)
## dCdu
all.equal(copula:::dCdu(kcgcd3, u), copula:::dCduNumer(kcgcd3, u, may.warn=FALSE))
## dCdtheta
all.equal(copula:::dCdtheta(kcgcd3, u), copula:::dCdthetaNumer(kcgcd3, u, may.warn=FALSE))
## dlogcdu
all.equal(copula:::dlogcdu(kcgcd3, u), copula:::dlogcduNumer(kcgcd3, u, may.warn=FALSE))
## dlogcdtheta
all.equal(copula:::dlogcdtheta(kcgcd3, u), copula:::dlogcdthetaNumer(kcgcd3, u, may.warn=FALSE))
#############################################################################
## fitting checking
do1 <- function(n, cop) {
U <- pobs(rCopula(n, cop))
fit <- try(fitCopula(cop, U, method = "mpl"))
p <- nParam(cop, freeOnly=TRUE)
if (inherits(fit, "try-error")) rep(NA_real_, 2 * p)
else c(coef(fit), sqrt(diag(vcov(fit))))
}
sumsim <- function(sim) {
p <- nrow(sim) / 2
mm <- apply(sim, 1, mean, na.rm = TRUE)
ss <- apply(sim, 1, sd, na.rm = TRUE)
data.frame(estimate = mm[1:p], ese = ss[1:p], ase = mm[p + 1:p])
}
if (doExtras) {
set.seed(123)
nrep <- 50
n <- 1000
sim <- replicate(nrep, do1(n, kcg))
sumsim(sim)
cbind(true = getTheta(kcg), sumsim(sim))
## the average se is greater than empirical for the shape parameters; need more investigation
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.