Nothing
#' Calls ODE solver for a particular model
#'
#' Please refer to the *Modeling Howto* vignette on how to implement custom
#' models by overloading the `solver` function.
#'
#' @param scenario [scenario] object
#' @param times numeric vector of output times, overrides any scenario setting
#' @param ... additional parameters passed on to [deSolve::ode()]
#' @param approx string, interpolation method of exposure series, see [stats::approxfun()]
#' @param f if `approx="constant"`, a number between 0 and 1 inclusive, see [stats::approxfun()]
#' @param method string, numerical solver used by [deSolve::ode()]
#' @param hmax numeric, maximum step length in time, see [deSolve::ode()]
#' @return `data.frame` with simulation results
#' @export
setGeneric("solver",
function(scenario, times, ...) standardGeneric("solver"),
signature = "scenario"
)
# Default solver which uses the model's name to switch between solver calls
solver_default <- function(scenario, times, ...) {
stop("unknown model type, cannot simulate scenario")
}
#' @describeIn solver Default solver, raises an error
setMethod("solver", "ANY", solver_default)
# @param scenario Scenario object
# @param times numeric vector, time points for result set
# @param approx string, interpolation method of exposure series, see [stats::approxfun()]
# @param hmax numeric, maximum step length in time, see [deSolve::ode()]
# @param ... additional arguments passed to [deSolve::ode()]
# @param approx string, interpolation method of exposure series, see [stats::approxfun()]
# @param f if `approx="constant"`, a number between 0 and 1 inclusive, see [stats::approxfun()]
# @param method string, numerical solver used by [deSolve::ode()]
#' @importFrom deSolve ode
solver_GUTS_RED_SD <- function(scenario, times, approx=c("linear","constant"),
f=1, method="lsoda", hmax=1, ...) {
# use time points from scenario if nothing else is provided
if(missing(times))
times <- scenario@times
# check if at least two time points are present
if(length(times)<2) stop("times vector is not an interval")
params <- scenario@param
if(is.list(params))
params <- unlist(params)
approx <- match.arg(approx)
# make sure that parameters are present and in required order
params <- params[c("kd","hb","z","kk")]
as.data.frame(ode(y=scenario@init, times=times, parms=params, dllname="cvasi",
initfunc="gutsredsd_init", func="gutsredsd_func", initforc="gutsredsd_forc",
forcings=scenario@exposure@series, fcontrol=list(method=approx, rule=2, f=f, ties="ordered"),
outnames=c("Cw"), method=method, hmax=hmax, ...))
}
#' @include class-GutsRed.R
#' @describeIn solver Numerically integrates GUTS-RED-SD models
setMethod("solver", "GutsRedSd", function(scenario, times, ...) solver_GUTS_RED_SD(scenario, times, ...))
# @param scenario Scenario object
# @param times numeric vector, time points for result set
# @param approx string, interpolation method of exposure series, see [stats::approxfun()]
# @param f if `approx="constant"`, a number between 0 and 1 inclusive, see [stats::approxfun()]
# @param method string, numerical solver used by [deSolve::ode()]
# @param hmax numeric, maximum step length in time, see [deSolve::ode()]
# @param ... additional arguments passed to [deSolve::ode()]
#' @importFrom deSolve ode
solver_GUTS_RED_IT <- function(scenario, times, approx=c("linear","constant"),
f=1, method="lsoda", hmax=1, ...) {
# use time points from scenario if nothing else is provided
if(missing(times))
times <- scenario@times
# check if at least two time points are present
if(length(times)<2) stop("times vector is not an interval")
params <- scenario@param
if(is.list(params))
params <- unlist(params)
approx <- match.arg(approx)
# make sure that parameters are present and in required order
params <- params[c("kd","hb")]
as.data.frame(ode(y=scenario@init, times=times, parms=params, dllname="cvasi",
initfunc="gutsredit_init", func="gutsredit_func", initforc="gutsredit_forc",
forcings=scenario@exposure@series, fcontrol=list(method=approx, rule=2, f=f, ties="ordered"),
outnames=c("Cw"), method=method, hmax=hmax, ...))
}
#' @include class-GutsRed.R
#' @describeIn solver Numerically integrates GUTS-RED-IT models
setMethod("solver", "GutsRedIt", function(scenario, times, ...) solver_GUTS_RED_IT(scenario, times, ...) )
# @param scenario Scenario object
# @param times numeric vector, time points for result set
# @param approx string, interpolation method of exposure series, see [stats::approxfun()]
# @param f if `approx="constant"`, a number between 0 and 1 inclusive, see [stats::approxfun()]
# @param nout `numeric`, number of additional output variables, `nout=1` appends
# the internal concentration `C_int`, the maximum number is 13
# @param method string, numerical solver used by [deSolve::ode()]
# @param hmax numeric, maximum step length in time, see [deSolve::ode()]
# @param ... additional arguments passed to [deSolve::ode()]
#' @importFrom deSolve ode
solver_Lemna_Schmitt <- function(scenario, times, approx=c("linear","constant"),
f=1, nout=2, method="ode45", hmax=0.1, ...) {
# use time points from scenario if nothing else is provided
if(missing(times))
times <- scenario@times
# check if at least two time points are present
if(length(times)<2)
stop("times vector is not an interval")
params <- scenario@param
if(is.list(params))
params <- unlist(params)
approx <- match.arg(approx)
# make sure that parameters are present and in required order
params.req <- c("Emax","EC50","b","P_up","AperBM","Kbm","P_Temp","MolWeight",
"k_phot_fix","k_phot_max","k_resp","k_loss","Tmin","Tmax",
"Topt","t_ref","Q10","k_0","a_k","C_P","CP50","a_P","KiP",
"C_N","CN50","a_N","KiN","BM50","mass_per_frond","BMw2BMd")
# additional output variables
outnames <- c("C_int","FrondNo","C_int_u","BM_fresh","k_phot_eff","k_resp_eff","f_Eff",
"P_up_eff","actConc","actTemp","actRad","dBMdt","dEdt","dM_intdt")
# check for missing parameters
params.missing <- setdiff(params.req, names(params))
if(length(params.missing)>0)
stop(paste("missing parameters:",paste(params.missing,sep=",",collapse=",")))
# make sure exposure AUC parameter exists
# magic value: -1 denotes that threshold is not considered
if(!("threshold" %in% names(params))) {
params["threshold"] <- -1
}
# disable threshold for scenarios were effects were disabled
if(params["Emax"] <= 0 | params["threshold"] <= 0) {
params["threshold"] <- -1
}
# reorder parameters for deSolve
params <- params[c(params.req, "threshold")]
# check if any parameter is negative apart from threshold
if(any(head(params,-1)<0))
stop(paste("parameter out of bounds:",paste(names(params)[which(head(params,-1)<0)],sep=",")))
# create forcings list
# TODO check if it can be activated without issues
#if(params["k_phot_fix"]==FALSE)
forcings <- list(scenario@exposure@series, scenario@forcings$temp, scenario@forcings$rad)
#else # temp and radiation are not required by model if k_phot_fix==TRUE
# forcings <- list(exposure, data.frame(t=0,temp=-1), data.frame(t=0,rad=-1))
# run solver
as.data.frame(ode(y=scenario@init, times=times, parms=params, dllname="cvasi",
initfunc="lemna_init", func="lemna_func", initforc="lemna_forc",
forcings=forcings, fcontrol=list(method=approx, rule=2, f=f, ties="ordered"),
nout=nout, outnames=outnames, method=method, hmax=hmax, ...))
}
#' @include class-Lemna.R
#' @describeIn solver Numerically integrates Lemna_Schmitt models
setMethod("solver", "LemnaSchmittScenario", function(scenario, times, ...) solver_Lemna_Schmitt(scenario, times, ...) )
# Numerically integrate Lemna_SETAC scenarios
#
# @param scenario an EffectScenario object
# @param times optional output times, will override scenario's properties
# @param approx how to interpolate between data points in forcing series, see [deSolve::ode()]
# @param rule how to handle data points outside of time-series, see [deSolve::forcings]
# @param f how to approximate data points for `constant` interpolation, see [deSolve::forcings]
# @param nout number of additional output variables, see [deSolve::ode()]
# @param method numerical integration method, see [deSolve::ode()]
# @param hmax numeric, set max step length in time, defaults to `0.1`
# @param ... additional parameters passed on to [deSolve::ode()]
#
# @return data.frame
### disabled for now @importFrom lemna lemna_desolve param_new
solver_Lemna_SETAC <- function(scenario, times, approx = c("linear","constant"),
f=0, nout=2, method="lsoda", hmax=0.1, ...) {
if(missing(times))
times <- scenario@times
if(length(times) < 2)
stop("output times vector is not an interval")
params <- scenario@param
if(is.list(params)) params <- unlist(params)
approx <- match.arg(approx)
# check for missing parameters
params.missing <- setdiff(scenario@param.req, names(params))
if(length(params.missing)>0)
stop(paste("missing parameters:",paste(params.missing,sep=",",collapse=",")))
# reorder parameters for deSolve
params <- params[names(lemna::param_new())]
# check if any parameter is negative
if(any(params<0, na.rm=TRUE))
stop(paste("parameter out of bounds:",paste(names(params)[which(params<0)],sep=",")))
envir <- scenario@forcings
# Environmental factors are irrelevant in case of unlimited growth, removing any
# superfluous time-series data will reduce simulation overhead/runtime
if(params["k_photo_fixed"]) {
forcings <- list(scenario@exposure@series,
data.frame(time=0, tmp=0),
data.frame(time=0, irr=0),
data.frame(time=0, P=0),
data.frame(time=0, N=0))
} else {
forcings <- list(scenario@exposure@series, envir$tmp, envir$irr, envir$P, envir$N)
}
# run deSolve
as.data.frame(lemna::lemna_desolve(y=scenario@init, times=times, parms=params, forcings=forcings,
fcontrol=list(method=approx, rule=2, f=f, ties="ordered"), nout=nout,
method=method, hmax=hmax, ...))
}
#' @include class-Lemna.R
#' @describeIn solver Numerically integrates Lemna_SETAC models
setMethod("solver", "LemnaSetacScenario", function(scenario, times, ...) solver_Lemna_SETAC(scenario, times, ...) )
# Solver for MyrioExp scenarios
solver_MyrioExp <- function(scenario, ...) {
# Constant identifying exponential growth model
scenario@param$growthno <- 1
# Dummy value, only used for logistic growth
scenario@param$BM_L <- NA_real_
solver_Myrio(scenario, ...)
}
#' @include class-Myriophyllum.R
#' @describeIn solver Numerically integrates Myrio models
setMethod("solver", "MyrioExpScenario", function(scenario, times, ...) solver_MyrioExp(scenario, times, ...))
# Solver for MyrioLog scenarios
solver_MyrioLog <- function(scenario, ...) {
# Constant identifying logistic growth model
scenario@param$growthno <- 2
solver_Myrio(scenario, ...)
}
#' @include class-Myriophyllum.R
#' @describeIn solver Numerically integrates Myrio_log models
setMethod("solver", "MyrioLogScenario", function(scenario, times, ...) solver_MyrioLog(scenario, times, ...))
# Numerically solve Myriophyllum scenarios
#
# @param scenario
# @param times
# @param ... additional parameters passed on to `solve_Lemna_SETAC()`
# @return data.frame
solver_Myrio <- function(scenario, times, approx=c("linear","constant"),
f=0, nout=2, method="lsoda", hmax=0.1, ...) {
approx <- match.arg(approx)
if(missing(times))
times <- scenario@times
if(length(times) < 2)
stop("output times vector is not an interval")
params <- scenario@param
# make sure that parameters are present and in required order
params_order <- c("k_photo_max", "growthno", "BM_L", "E_max", "EC50_int", "b",
"P", "r_A_DW", "r_FW_DW", "r_FW_V", "r_DW_TSL", "K_pw",
"k_met")
if(is.list(params))
params <- unlist(params)
# check for missing parameters
params_missing <- setdiff(scenario@param.req, names(params))
if(length(params_missing)>0)
stop(paste("missing parameters:", paste(params_missing, collapse=",")))
# reorder parameters for deSolve
params <- params[params_order]
forcings <- list(scenario@exposure@series)
fcontrol <- list(method=approx, rule=2, f=f, ties="ordered")
# set names of additional output variables
outnames <- c("C_int", "TSL", "f_photo", "C_int_unb", "C_ext", "dBM", "dM_int")
as.data.frame(ode(y=scenario@init, times=times, parms=params, dllname="cvasi",
initfunc="myrio_init", func="myrio_func", initforc="myrio_forc",
forcings=forcings, fcontrol=fcontrol, nout=nout, method=method,
hmax=hmax, outnames=outnames, ...))
}
#' @importFrom deSolve ode
solver_DEB_abj <- function(scenario, times, approx=c("linear","constant"), f=1,
method="lsoda", ...) {
# use time points from scenario if nothing else is provided
if(missing(times))
times <- scenario@times
# check if at least two time points are present
if(length(times)<2) stop("times vector is not an interval")
approx <- match.arg(approx)
# make sure that parameters are present and in required order
params.req <- c("p_M","v","k_J","p_Am","kap","E_G","f","E_Hj","E_Hp","kap_R","ke","c0",
"cT","L_b","L_j","MoA")
# additional output variables
outnames <- c("pC","pA","pJ","MV")
params <- scenario@param
if(is.list(params))
params <- unlist(params)
# check for missing parameters
params.missing <- setdiff(params.req, names(params))
if(length(params.missing)>0)
stop(paste("missing parameters:",paste(params.missing,sep=",",collapse=",")))
# reorder parameters for deSolve
params <- params[params.req]
# create forcings list
forcings <- list(scenario@exposure@series)
# run solver
as.data.frame(ode(y=scenario@init, times=times, parms=params, method=method,
dllname="cvasi", initfunc="deb_abj_init", func="deb_abj_func", initforc="deb_abj_forc",
forcings=forcings, fcontrol=list(method=approx, rule=2, f=f, ties="ordered"),
outnames=outnames, ...))
}
#' @include class-Deb.R
#' @describeIn solver Numerically integrates DEB_abj models
setMethod("solver", "DebAbj", function(scenario, times, ...) solver_DEB_abj(scenario, times, ...))
#' @importFrom utils head tail
#' @importFrom deSolve ode
solver_DEB_Daphnia <- function(scenario, times, approx=c("linear", "constant"),
f=1, method="ode45", ...) {
# use time points from scenario if nothing else is provided
if(missing(times))
times <- scenario@times
# check if at least two time points are present
if(length(times)<2) stop("times vector is not an interval")
params <- scenario@param
if(is.list(params))
params <- unlist(params)
approx <- match.arg(approx)
if(scenario@init[["L"]] < params[["L0"]])
warning("initial L is smaller than parameter L0")
# make sure that parameters are present and in required order
params_req <- c("L0", "Lp", "Lm", "rB", "Rm", "f", "hb", "Lf", "Lj", "Tlag",
"kd", "zb", "bb", "zs", "bs", "FBV", "KRV", "kap", "yP",
"Lm_ref", "len", "Tbp", "MoA", "FB")
# Not all parameters are required by the ODE
params_ode <- setdiff(params_req, c("len", "Tbp"))
# additional output variables
outnames <- c("f", "fR", "kd", "s", "sA", "h", "xu", "xe", "xG", "xR")
# check for missing parameters
params.missing <- setdiff(params_req, names(params))
if(length(params.missing)>0)
stop(paste("missing parameters:",paste(params.missing,sep=",",collapse=",")))
# check if any parameter is negative
if(any(head(params,-1)<0))
stop(paste("parameter out of bounds:",paste(names(params)[which(head(params,-1)<0)],sep=",")))
# only one forcings time-series: exposure
forcings <- list(scenario@exposure@series)
# This is a means to include a delay caused by the brood pouch in species
# like Daphnia. The repro data are for the appearance of neonates, but egg
# production occurs earlier. This globally shifts the model output in this
# function below. This way, the time vector in the data does not need to be
# manipulated, and the model plots show the neonate production as expected.
bp <- params[["Tbp"]] > 0 # consider brood-pouch delay?
if(bp) {
tbp <- times[times > params[["Tbp"]]] - params[["Tbp"]] # extra times needed to calculate brood-pouch delay
ordering <- order(c(times, tbp))
loct <- c(rep(F, length(times)), rep(T, length(tbp)))[ordering]
times <- sort(c(times, tbp))
}
# run solver
out <- ode(y=scenario@init, times=times, parms=params[params_ode], dllname="cvasi",
initfunc="debtox_daphnia_init", func="debtox_daphnia_func",
initforc="debtox_daphnia_forc", forcings=forcings,
fcontrol=list(method=approx, rule=2, f=f, ties="ordered"),
outnames=outnames, method=method, ...)
out <- as.data.frame(out)
# Since we need to find the maximum of length over time, a large time
# vector is needed. We cannot use the events function to find the exact
# point at which length becomes negative, since the events functions only
# looks at states, and not at the derivatives!
if(params["len"] == 2) { # when animal cannot shrink in length (but does on weight!)
out[, "L"] <- cummax(out[, "L"])
}
out[, "S"] <- pmax(0, out[, "S"]) # make sure survival does not get negative
# In some cases, it may become just a bit negative, which means zero.
# if we need a brood-pouch delay ...
if(bp) {
Xbp <- out[loct, "R"]
# Select the correct time points to return to the calling function
out <- out[!loct, ]
# put in the brood-pouch ones we asked for
out[, "R"] <- c(rep(0, nrow(out) - length(Xbp)), Xbp)
}
out
}
#' @include class-Deb.R
#' @describeIn solver Numerically integrates DEB_Daphnia models
setMethod("solver", "DebDaphnia", solver_DEB_Daphnia)
# Solver function for Algae_Weber models
# @param scenario Scenario object
# @param times numeric vector, time points for result set
# @param approx string, interpolation method of exposure series, see [stats::approxfun()]
# @param f if `approx="constant"`, a number between 0 and 1 inclusive, see [stats::approxfun()]
# @param rule how to handle data points outside of time-series, see [deSolve::forcings]
# @param method string, numerical solver used by [deSolve::ode()]
# @param hmax numeric, maximum step length in time, see [deSolve::ode()]
# @param ... additional arguments passed to [deSolve::ode()]
#' @importFrom deSolve ode
solver_Algae_Weber <- function(scenario, times, approx = c("linear","constant"),
f = 1, method = "lsoda", hmax = 0.1, ...) {
# use time points from scenario if nothing else is provided
if(missing(times))
times <- scenario@times
# check if at least two time points are present
if(length(times)<2)
stop("times vector is not an interval")
params.req = c("mu_max", "m_max", "v_max", "k_s",
"Q_min", "Q_max", "R_0", "D",
"T_opt", "T_min", "T_max", "I_opt",
"EC_50", "b", "k"
)
params <- scenario@param
if(is.list(params))
params <- unlist(params)
# reorder parameters for deSolve
params <- params[params.req]
if(is.list(params)) params <- unlist(params)
approx <- match.arg(approx)
# create forcings list
forcings <- list(
scenario@exposure@series,
scenario@forcings$I,
scenario@forcings$T_act
)
# set names of additional output variables
outnames <- c("Cin", "I", "Tact", "dA", "dQ", "dP", "dC")
# run solver
as.data.frame(ode(y = scenario@init, times,
initfunc = "algae_init",
func = "algae_func",
initforc = "algae_forc",
parms = params,
forcings = forcings,
fcontrol = list(rule = 2, method = approx, f = f, ties = "ordered"),
dllname = "cvasi",
method = method,
hmax = hmax,
outnames = outnames,
...))
}
#' @include class-Algae.R
#' @describeIn solver numerically integrates Algae_Weber models
setMethod("solver", "AlgaeWeberScenario", solver_Algae_Weber)
# Solver function for Algae_TKTD models
# @param scenario Scenario object
# @param times numeric vector, time points for result set
# @param approx string, interpolation method of exposure series, see [stats::approxfun()]
# @param f if `approx="constant"`, a number between 0 and 1 inclusive, see [stats::approxfun()]
# @param rule how to handle data points outside of time-series, see [deSolve::forcings]
# @param method string, numerical solver used by [deSolve::ode()]
# @param hmax numeric, maximum step length in time, see [deSolve::ode()]
# @param ... additional arguments passed to [deSolve::ode()]
#' @importFrom deSolve ode
solver_Algae_TKTD <- function(scenario, times, approx = c("linear","constant"),
f = 1, method = "lsoda", hmax = 0.1, ...) {
# use time points from scenario if nothing else is provided
if(missing(times))
times <- scenario@times
# check if at least two time points are present
if(length(times)<2)
stop("times vector is not an interval")
params.req = c("mu_max", "m_max", "v_max", "k_s",
"Q_min", "Q_max",
"T_opt", "T_min", "T_max", "I_opt",
"EC_50", "b", "kD", "dose_resp"
)
params <- scenario@param
if(is.list(params))
params <- unlist(params)
# reorder parameters for deSolve
params <- params[params.req]
# create forcings list
forcings <- list(
scenario@exposure@series,
scenario@forcings$I,
scenario@forcings$T_act
)
if(is.list(params)) params <- unlist(params)
approx <- match.arg(approx)
# set names of additional output variables
outnames <- c("Cw", "I", "Tact", "dA", "dQ", "dP", "dDw")
# run solver
as.data.frame(ode(y = scenario@init, times,
initfunc = "algae_TKTD_init",
func = "algae_TKTD_func",
initforc = "algae_TKTD_forc",
parms = params,
forcings = forcings,
fcontrol = list(rule = 2, method = approx, f = f, ties = "ordered"),
dllname = "cvasi",
method = method,
hmax = hmax,
outnames = outnames,
...))
}
#' @include class-Algae.R
#' @describeIn solver numerically integrates Algae_TKTD models
setMethod("solver", "AlgaeTKTDScenario", solver_Algae_TKTD)
# Solver function for Algae_Weber models
# @param scenario Scenario object
# @param times numeric vector, time points for result set
# @param approx string, interpolation method of exposure series, see [stats::approxfun()]
# @param f if `approx="constant"`, a number between 0 and 1 inclusive, see [stats::approxfun()]
# @param rule how to handle data points outside of time-series, see [deSolve::forcings]
# @param method string, numerical solver used by [deSolve::ode()]
# @param hmax numeric, maximum step length in time, see [deSolve::ode()]
# @param ... additional arguments passed to [deSolve::ode()]
#' @importFrom deSolve ode
solver_Algae_Simple <- function(scenario, times, approx = c("linear","constant"),
f = 1, method = "ode45", hmax = 0.01, ...) {
# use time points from scenario if nothing else is provided
if(missing(times))
times <- scenario@times
# check if at least two time points are present
if(length(times)<2)
stop("times vector is not an interval")
params <- scenario@param
if(is.list(params))
params <- unlist(params)
# create forcings list
forcings <- list(scenario@exposure@series, scenario@forcings$f_growth)
#required for C code
params.req = c("mu_max",
"EC_50", "b", "kD",
"scaled", "dose_response"
)
# reorder parameters for deSolve
params <- params[params.req]
if(is.list(params)) params <- unlist(params)
approx <- match.arg(approx)
# set names of additional output variables
outnames <- c("dA", "dDw", "dose_response", "scaled", "f_growth")
# run solver
as.data.frame(ode(y = scenario@init, times,
initfunc = "algae_simple_init",
func = "algae_simple_func",
initforc = "algae_simple_forc",
parms = params,
forcings = forcings,
fcontrol = list(rule = 2, method = approx, f = f, ties = "ordered"),
dllname = "cvasi",
method = method,
hmax = hmax,
outnames = outnames,
...))
}
#' @include class-Algae.R
#' @describeIn solver numerically integrates Algae_Simple models
setMethod("solver", "AlgaeSimpleScenario", solver_Algae_Simple)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.