Nothing
#' Retrieve ROC curve data for a model for a particular data partition (see DataPartition)
#'
#' @inheritParams GetLiftChart
#' @return list with the following components:
#' \itemize{
#' \item source. Character: data partition for which ROC curve data is returned
#' (see DataPartition).
#' \item negativeClassPredictions. Numeric: example predictions for the negative class.
#' \item rocPoints. data.frame: each row represents pre-calculated metrics (accuracy,
#' f1_score, false_negative_score, true_negative_score, true_positive_score,
#' false_positive_score, true_negative_rate, false_positive_rate, true_positive_rate,
#' matthews_correlation_coefficient, positive_predictive_value, negative_predictive_value,
#' threshold) associated with different thresholds for the ROC curve.
#' \item positiveClassPredictions. Numeric: example predictions for the positive class.
#' }
#' @examples
#' \dontrun{
#' projectId <- "59a5af20c80891534e3c2bde"
#' modelId <- "5996f820af07fc605e81ead4"
#' model <- GetModel(projectId, modelId)
#' GetRocCurve(model)
#' }
#' @export
GetRocCurve <- function(model, source = DataPartition$VALIDATION,
fallbackToParentInsights = FALSE) {
as.dataRobotRocCurve(GetGeneralizedInsight("rocCurve",
model,
source = source,
fallbackToParentInsights = fallbackToParentInsights))
}
as.dataRobotRocCurve <- function(inList) {
rocElements <- c("source",
"negativeClassPredictions",
"rocPoints",
"positiveClassPredictions")
rocList <- ApplySchema(inList, rocElements)
rocPointsElements <- c("accuracy", "f1Score", "falseNegativeScore",
"trueNegativeScore", "truePositiveScore",
"falsePositiveScore", "trueNegativeRate",
"falsePositiveRate", "truePositiveRate",
"matthewsCorrelationCoefficient", "positivePredictiveValue",
"negativePredictiveValue", "threshold",
"fractionPredictedAsPositive", "fractionPredictedAsNegative",
"liftPositive", "liftNegative")
rocList$rocPoints <- ApplySchema(rocList$rocPoints, rocPointsElements)
rocList
}
#' Retrieve ROC curve data for a model for all available data partitions (see DataPartition)
#'
#' @inheritParams GetLiftChart
#' @return list of lists where each list is renamed as the data partitions source and returns the
#' following components:
#' \itemize{
#' \item source. Character: data partitions for which ROC curve data is returned
#' (see DataPartition).
#' \item negativeClassPredictions. Numeric: example predictions for the negative class for each
#' data partition source.
#' \item rocPoints. data.frame: each row represents pre-calculated metrics (accuracy, f1_score,
#' false_negative_score, true_negative_score, true_positive_score, false_positive_score,
#' true_negative_rate, false_positive_rate, true_positive_rate, matthews_correlation_coefficient,
#' positive_predictive_value, negative_predictive_value, threshold) associated with different
#' thresholds for the ROC curve.
#' \item positiveClassPredictions. Numeric: example predictions for the positive class for each
#' data partition source.
#' }
#' @examples
#' \dontrun{
#' projectId <- "59a5af20c80891534e3c2bde"
#' modelId <- "5996f820af07fc605e81ead4"
#' model <- GetModel(projectId, modelId)
#' ListRocCurves(model)
#' }
#' @export
ListRocCurves <- function(model, fallbackToParentInsights = FALSE) {
response <- GetGeneralizedInsight("rocCurve",
model,
source = NULL,
fallbackToParentInsights = fallbackToParentInsights)
temp <- list()
for (i in 1:nrow(response$charts)) {
temp[[i]] <- list(source = response$charts$source[i],
negativeClassPredictions = response$charts$negativeClassPredictions[[i]],
rocPoints = response$charts$rocPoints[[i]],
positiveClassPredictions = response$charts$positiveClassPredictions[[i]])
}
names(temp) <- response$charts$source
response$charts <- temp
lapply(response$charts, as.dataRobotRocCurve)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.