R/common_subtrees.R

Defines functions common_subtrees_clusters replace_unique_items_with_0_and_rank rank_values_with_clusters nodes_with_shared_labels

Documented in common_subtrees_clusters rank_values_with_clusters

# Copyright (C) Tal Galili
#
# This file is part of dendextend.
#
# dendextend is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 2 of the License, or
# (at your option) any later version.
#
# dendextend is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
#  A copy of the GNU General Public License is available at
#  http://www.r-project.org/Licenses/
#






# Uses distinct_edges to find which nodes are distinct
# And then returns a logical vector indicating for each node
# if it is one in which it, and all of its children, are nodes
# that contain items that are shared (as a group) with those in dend2
# put differently - these are the nodes that form a sub-tree which will be
# identical (topologically) with some subtree in dend2
nodes_with_shared_labels <- function(dend1, dend2, ...) {
  distinct_nodes <- distinct_edges(dend1, dend2)
  good_nodes <- logical(nnodes(dend1))
  i_nodes <- 0

  check_if_node_is_good <- function(dend_node) {
    i_nodes <<- i_nodes + 1
    current_i_nodes <- i_nodes

    if (is.leaf(dend_node)) {
      good_nodes[current_i_nodes] <<- TRUE
      return(TRUE)
    }

    is_distinct_node <- i_nodes %in% distinct_nodes

    n_children <- length(dend_node)
    are_children_good <- logical(n_children)

    for (i in 1:n_children) {
      are_children_good[i] <- check_if_node_is_good(dend_node[[i]])
    }

    is_good_node <- all(c(are_children_good, !is_distinct_node))
    if (is_good_node) good_nodes[current_i_nodes] <<- TRUE
    return(is_good_node)
  }


  check_if_node_is_good(dend1)

  good_nodes
}




#' Rank a vector based on clusters
#' @export
#'
#' @param x numeric vector
#' @param ignore0 logical (FALSE). If TRUE, will ignore the 0's in the vector
#' @param ... not used
#'
#' @return
#' an integer vector with the number of unique values
#' as the number of uniques in the original vector.
#' And the values are ranked from 1 (in the beginning of the vector)
#' to the number of unique clusters.
#'
#' @examples
#'
#' rank_values_with_clusters(c(1, 2, 3))
#' rank_values_with_clusters(c(1, 1, 3))
#' rank_values_with_clusters(c(0.1, 0.1, 3000))
#' rank_values_with_clusters(c(3, 1, 2))
#' rank_values_with_clusters(c(1, 3, 3, 3, 3, 3, 3, 4, 2, 2))
#'
#' rank_values_with_clusters(c(3, 1, 2), ignore0 = TRUE)
#' rank_values_with_clusters(c(3, 1, 2), ignore0 = FALSE)
#' rank_values_with_clusters(c(3, 1, 0, 2), ignore0 = TRUE)
#' rank_values_with_clusters(c(3, 1, 0, 2), ignore0 = FALSE)
rank_values_with_clusters <- function(x, ignore0 = FALSE, ...) {
  if (ignore0) {
    old_x <- x
    x <- old_x[old_x != 0]
  }

  rle_lengths <- rle(x)$lengths
  x <- rep(seq_along(rle_lengths), times = rle_lengths)

  if (ignore0) {
    old_x[old_x != 0] <- x
    x <- old_x
  }

  x
}




replace_unique_items_with_0_and_rank <- function(x, ...) {
  # insert zeros
  tbl_x <- table(x)
  unique_char_values <- names(tbl_x)[tbl_x == 1]
  ss_unique <- as.character(x) %in% unique_char_values
  x[ss_unique] <- 0
  #    x # this is cleaned

  ### # fails:
  ### x[!ss_unique] <- rank(x[!ss_unique], ties = "min")

  # now we rank
  x[!ss_unique] <- rank_values_with_clusters(x[!ss_unique])
  #    rep(1:3, times = c(1,3,3))
  #    rle(c(1,2,2,3,3,4))
  x
}
# replace_unique_items_with_0_and_rank(c(1,2,2,3,3,4))




#' Find clusters of common subtrees
#' @export
#' @description
#' Gets a dend and the output from "nodes_with_shared_labels"
#' and returns a vector (length of labels), indicating the clusters
#' forming shared subtrees
#' @param dend1 a \link{dendrogram}.
#' @param dend2 a \link{dendrogram}.
#' @param leaves_get_0_cluster logical (TRUE). Should the leaves which are not part of
#' a larger common subtree get a unique cluster number, or the value 0.
#' @param ... not used.
#'
#' @return
#' An integer vector, with values indicating which leaves in dend1 form
#' a common subtree cluster, with ones available in dend2
#' @seealso  \link{color_branches}, \link{tanglegram}
#'
#' @examples
#'
#'
#' library(dendextend)
#' dend1 <- 1:6 %>%
#'   dist() %>%
#'   hclust() %>%
#'   as.dendrogram()
#' dend2 <- dend1 %>% set("labels", c(1:4, 6:5))
#' tanglegram(dend1, dend2)
#'
#' clusters1 <- common_subtrees_clusters(dend1, dend2)
#' dend1_2 <- color_branches(dend1, clusters = clusters1)
#' plot(dend1_2)
#' plot(dend1_2, horiz = TRUE)
#' tanglegram(dend1_2, dend2, highlight_distinct_edges = FALSE)
#' tanglegram(dend1_2, dend2)
common_subtrees_clusters <- function(dend1, dend2, leaves_get_0_cluster = TRUE, ...) {
  good_nodes <- nodes_with_shared_labels(dend1, dend2)
  dend <- dend1


  clusters <- numeric(nleaves(dend))
  cluster_group <- 0
  leaf_id <- 0
  i_nodes <- 0


  fill_clusters <- function(dend_node) {
    i_nodes <<- i_nodes + 1
    current_node <- i_nodes

    if (is.leaf(dend_node)) {
      if (!good_nodes[current_node]) cluster_group <<- cluster_group + 1
      leaf_id <<- leaf_id + 1
      clusters[leaf_id] <<- cluster_group
      return(NULL)
    }

    # If not leaf:
    n_children <- length(dend_node)

    for (i in 1:n_children) {
      if (!good_nodes[current_node]) cluster_group <<- cluster_group + 1
      fill_clusters(dend_node[[i]])
    }

    return(NULL)
  }

  fill_clusters(dend)

  clusters <- rank_values_with_clusters(clusters)

  if (leaves_get_0_cluster) {
    clusters <- replace_unique_items_with_0_and_rank(clusters)
  }

  clusters
}

Try the dendextend package in your browser

Any scripts or data that you put into this service are public.

dendextend documentation built on May 9, 2021, 1:06 a.m.