R/Distribution.R

Defines functions summary.Distribution as.character.Distribution

#' @include distr6_globals.R helpers.R
#' @title Generalised Distribution Object
#'
#' @description A generalised distribution object for defining custom probability distributions
#'   as well as serving as the parent class to specific, familiar distributions.
#'
#' @name Distribution
#' @template param_decorators
#' @template method_setParameterValue
#' @template method_liesin
#' @template param_log
#' @template param_logp
#' @template param_simplify
#' @template param_data
#' @template param_lowertail
#' @template param_n
#' @template param_paramid
#' @template class_distribution
#'
#' @return Returns R6 object of class Distribution.
#'
#' @export
Distribution <- R6Class("Distribution",
  lock_objects = FALSE,
  public = list(
    name = character(0),
    short_name = character(0),
    description = NULL,

    #' @description
    #' Creates a new instance of this [R6][R6::R6Class] class.
    #' @param name `character(1)` \cr
    #' Full name of distribution.
    #' @param short_name `character(1)` \cr
    #' Short name of distribution for printing.
    #' @param type `([set6::Set])` \cr
    #' Distribution type.
    #' @param support `([set6::Set])` \cr
    #' Distribution support.
    #' @param symmetric `logical(1)` \cr
    #' Symmetry type of the distribution.
    #' @param pdf `function(1)` \cr
    #' Probability density function of the distribution. At least one of `pdf` and
    #' `cdf` must be provided.
    #' @param cdf `function(1)` \cr
    #' Cumulative distribution function of the distribution. At least one of `pdf` and
    #' `cdf` must be provided.
    #' @param quantile `function(1)` \cr
    #' Quantile (inverse-cdf) function of the distribution.
    #' @param rand `function(1)` \cr
    #' Simulation function for drawing random samples from the distribution.
    #' @param parameters `([param6::ParameterSet])` \cr
    #' Parameter set for defining the parameters in the distribution, which should be set before
    #' construction.
    #' @param valueSupport `(character(1))` \cr
    #' The support type of the distribution, one of `"discrete", "continuous", "mixture"`.
    #' If `NULL`, determined automatically.
    #' @param variateForm `(character(1))` \cr
    #' The variate type of the distribution, one of `"univariate", "multivariate", "matrixvariate"`.
    #' If `NULL`, determined automatically.
    #' @param description `(character(1))` \cr
    #' Optional short description of the distribution.
    #' @param .suppressChecks `(logical(1))` \cr
    #' Used internally.
    initialize = function(name = NULL, short_name = NULL,
                          type, support = NULL,
                          symmetric = FALSE,
                          pdf = NULL, cdf = NULL, quantile = NULL, rand = NULL,
                          parameters = NULL, decorators = NULL, valueSupport = NULL,
                          variateForm = NULL, description = NULL,
                          .suppressChecks = FALSE) {

      if (.suppressChecks | inherits(self, "DistributionWrapper")) {

        if (!is.null(parameters)) parameters <- parameters$clone(deep = TRUE)
        if (!is.null(pdf)) formals(pdf) <- c(formals(pdf), list(self = self))
        if (!is.null(cdf)) formals(cdf) <- c(formals(cdf), list(self = self))
        if (!is.null(quantile)) formals(quantile) <- c(formals(quantile), list(self = self))
        if (!is.null(rand)) formals(rand) <- c(formals(rand), list(self = self))

      } else if (getR6Class(self) == "Distribution") {

        if (is.null(pdf) & is.null(cdf)) {
          stop("One of pdf or cdf must be provided.")
        }

        #------------
        # Name Checks
        #------------
        if (is.null(name) & is.null(short_name)) {
          checkmate::assert("One of 'name' or 'short_name' must be provided.")
        }
        if (is.null(short_name)) short_name <- gsub(" ", "", name, fixed = T)
        if (is.null(name)) name <- short_name
        checkmate::assertCharacter(c(name, short_name),
          .var.name = "'name' and 'short_name' must be of class 'character'."
        )
        checkmate::assert(length(strsplit(short_name, split = " ")[[1]]) == 1,
          .var.name = "'short_name' must be one word only."
        )

        #------------------------
        # Type and Support Checks
        #------------------------
        if (missing(type)) {
          stop("Distribution type must be provided.")
        }

        if (is.null(support)) support <- type
        assertSet(type)
        assertSet(support)

        #--------------------
        # valueSupport Checks
        #--------------------
        if (!is.null(valueSupport)) {
          valueSupport <- match.arg(valueSupport, c("continuous", "discrete", "mixture"))
        } else if (support$properties$countability == "uncountable") {
          valueSupport <- "continuous"
        } else {
          valueSupport <- "discrete"
        }

        #-------------------
        # variateForm Checks
        #-------------------
        if (!is.null(variateForm)) {
          variateForm <- match.arg(variateForm, c("univariate", "multivariate", "matrixvariate"))
        } else if (getR6Class(type) %in% c("ProductSet", "ExponentSet")) {
          variateForm <- "multivariate"
        } else {
          variateForm <- "univariate"
        }


        #-------------------
        # pdf and cdf Checks
        #-------------------
        if (!is.null(pdf)) {
          checkmate::assertSubset(names(formals(pdf)), c("x", "log"))
          formals(pdf) <- c(formals(pdf), list(self = self), alist(... = )) # nolint
        }

        if (!is.null(cdf)) {
          checkmate::assertSubset(names(formals(cdf)), c("x", "lower.tail", "log.p"))
          formals(cdf) <- c(formals(cdf), list(self = self), alist(... = )) # nolint
        }

        #-------------------------
        # quantile and rand Checks
        #-------------------------
        if (!is.null(quantile)) {
          checkmate::assertSubset(names(formals(quantile)), c("p", "lower.tail", "log.p"))
          formals(quantile) <- c(formals(quantile), list(self = self), alist(... = )) # nolint
        }

        if (!is.null(rand)) {
          stopifnot(names(formals(rand)) == "n")
          formals(rand) <- c(formals(rand), list(self = self), alist(... = )) # nolint
        }

        #-------------------------
        # Parameter Checks
        #-------------------------
        if (!is.null(parameters)) {
          assertParameterSet(parameters)
          # parameters <- parameters$clone(deep = TRUE)$.__enclos_env__$private$.update()
        }
      }

      if (!is.null(parameters)) {
        private$.parameters <- parameters
      }

      if (!is.null(pdf)) {
        private$.pdf <- pdf
        private$.isPdf <- 1L
      }
      if (!is.null(cdf)) {
        private$.cdf <- cdf
        private$.isCdf <- 1L
      }
      if (!is.null(quantile)) {
        private$.quantile <- quantile
        private$.isQuantile <- 1L
      }
      if (!is.null(rand)) {
        private$.rand <- rand
        private$.isRand <- 1L
      }

      if (!is.null(name)) self$name <- name
      if (!is.null(short_name)) self$short_name <- short_name

      private$.properties$support <- support
      private$.traits$type <- type
      private$.traits$valueSupport <- valueSupport
      private$.traits$variateForm <- variateForm

      if (!is.null(description)) self$description <- description

      symm <- ifelse(symmetric, "symmetric", "asymmetric")
      private$.properties$symmetry <- symm

      if (!is.null(decorators)) {
        suppressMessages(decorate(self, decorators))
      }

      lockBinding("name", self)
      lockBinding("short_name", self)
      lockBinding("description", self)
      lockBinding("traits", self)
      lockBinding("parameters", self)
      invisible(self)
    },

    #' @description
    #' Printable string representation of the `Distribution`. Primarily used internally.
    #' @param n `(integer(1))` \cr
    #' Number of parameters to display when printing.
    strprint = function(n = 2) {
      as.character(self, 2)
    },

    #' @description
    #' Prints the `Distribution`.
    #' @param n `(integer(1))` \cr
    #' Passed to `$strprint`.
    #' @param ... `ANY` \cr
    #' Unused. Added for consistency.
    print = function(n = 2, ...) {
      cat(self$strprint(n = n), "\n")
      invisible(self)
    },

    #' @description
    #' Prints a summary of the `Distribution`.
    #' @param full `(logical(1))` \cr
    #' If `TRUE` (default) prints a long summary of the distribution,
    #' otherwise prints a shorter summary.
    #' @param ... `ANY` \cr
    #' Unused. Added for consistency.
    summary = function(full = TRUE, ...) {

      if (full) {
        pars <- self$parameters()
        name <- ifelse(is.null(self$description), self$name, self$description)
        if (!length(pars)) {
          cat(name)
        } else {
          cat(name, "\nParameterised with:\n\n")
          print(self$parameters())
        }

        a_exp <- suppressMessages(try(self$mean(), silent = T))
        a_var <- suppressMessages(try(self$variance(), silent = T))
        a_skew <- suppressMessages(try(self$skewness(), silent = T))
        a_kurt <- suppressMessages(try(self$kurtosis(), silent = T))

        if (!inherits(a_exp, "try-error") | !inherits(a_var, "try-error") |
          !inherits(a_skew, "try-error") | !inherits(a_kurt, "try-error")) {
          cat("\n\n", "Quick Statistics", "\n", sep = "")
        }

        if (!inherits(a_exp, "try-error")) {
          cat("\tMean:")
          if (length(a_exp) > 1) {
            cat("\t\t", paste0(a_exp, collapse = ", "), "\n", sep = "")
          } else {
            cat("\t\t", a_exp, "\n", sep = "")
          }
        }
        if (!inherits(a_var, "try-error")) {
          cat("\tVariance:")
          if (length(a_var) > 1) {
            cat("\t", paste0(a_var, collapse = ", "), "\n", sep = "")
          } else {
            cat("\t", a_var, "\n", sep = "")
          }
        }
        if (!inherits(a_skew, "try-error")) {
          cat("\tSkewness:")
          # if(length(a_skew) > 1)
          #   cat("\t", paste0(a_skew, collapse = ", "),"\n", sep = "")
          # else
          cat("\t", a_skew, "\n", sep = "")
        }
        if (!inherits(a_kurt, "try-error")) {
          cat("\tEx. Kurtosis:")
          # if(length(a_kurt) > 1)
          #   cat("\t", paste0(a_kurt, collapse = ", "),"\n", sep = "")
          # else
          cat("\t", a_kurt, "\n", sep = "")
        }
        cat("\n")

        cat("Support:", self$properties$support$strprint(),
            "\tScientific Type:", self$traits$type$strprint(), "\n")
        cat("\nTraits:\t\t", self$traits$valueSupport, "; ",
            self$traits$variateForm, sep = "")
        cat("\nProperties:\t", self$properties$symmetry, sep = "")
        a_kurt <- self$properties$kurtosis
        a_skew <- self$properties$skewness
        if (!is.null(a_kurt)) cat(";", a_kurt)
        if (!is.null(a_skew)) cat(";", a_skew)

        if (length(self$decorators) != 0) {
          cat("\n\n Decorated with: ", paste0(self$decorators, collapse = ", "))
        }

      } else {
        if (length(private$.parameters) != 0) {
          cat(self$strprint())
        } else {
          cat(self$name)
        }
        cat("\nScientific Type:", self$traits$type$strprint(), "\t See $traits for more")
        cat("\nSupport:", self$properties$support$strprint(), "\t See $properties for more")
      }
      cat("\n")
      invisible(self)
    },

    #' @description
    #' Returns the full parameter details for the supplied parameter.
    #' @param id Deprecated.
    parameters = function(id = NULL) {
      if (!is.null(id)) {
        warning("'id' argument is deprecated and currently unused")
      }

      if (length(private$.parameters)) {
        private$.parameters
      }
    },

    #' @description
    #' Returns the value of the supplied parameter.
    getParameterValue = function(id, error = "warn") {
      if (length(private$.parameters)) {
        private$.parameters$get_values(id)
      }
    },

    #' @description
    #' Sets the value(s) of the given parameter(s).
    #'
    #' @examples
    #' b = Binomial$new()
    #' b$setParameterValue(size = 4, prob = 0.4)
    #' b$setParameterValue(lst = list(size = 4, prob = 0.4))
    setParameterValue = function(..., lst = list(...), error = "warn",
                                 resolveConflicts = FALSE) {
      if (resolveConflicts) {
        warning("'resolveConflicts' is redundant and deprecated")
      }

      if (private$.parameters$length && length(lst)) {
        private$.parameters$values <- unique_nlist(c(lst, private$.parameters$values))
      }

      invisible(self)
    },

    #' @description
    #'  For discrete distributions the probability mass function (pmf) is returned, defined as
    #'  \deqn{p_X(x) = P(X = x)}
    #'  for continuous distributions the probability density function (pdf), \eqn{f_X}, is returned
    #'  \deqn{f_X(x) = P(x < X \le x + dx)}
    #'  for some infinitesimally small \eqn{dx}.
    #'
    #' If available a pdf will be returned using an analytic expression. Otherwise,
    #' if the distribution has not been decorated with [FunctionImputation], \code{NULL} is
    #' returned.
    #'
    #' @param ... `(numeric())` \cr
    #' Points to evaluate the function at Arguments do not need
    #' to be named. The length of each argument corresponds to the number of points to evaluate,
    #' the number of arguments corresponds to the number of variables in the distribution.
    #' See examples.
    #'
    #' @examples
    #' b <- Binomial$new()
    #' b$pdf(1:10)
    #' b$pdf(1:10, log = TRUE)
    #' b$pdf(data = matrix(1:10))
    #'
    #' mvn <- MultivariateNormal$new()
    #' mvn$pdf(1, 2)
    #' mvn$pdf(1:2, 3:4)
    #' mvn$pdf(data = matrix(1:4, nrow = 2), simplify = FALSE)
    pdf = function(..., log = FALSE, simplify = TRUE, data = NULL) {

      if (!private$.isPdf) {
        return(NULL)
      }

      if (is.null(data)) {
        if (!...length()) {
          return(NULL)
        } else if (!length(...elt(1))) {
          return(NULL)
        }
      }

      data <- pdq_point_assert(..., self = self, data = data)
      if (!suppressWarnings(self$liesInType(as.numeric(data), all = TRUE, bound = TRUE))) {
        stop(
          sprintf("Not all points in %s lie in the distribution domain (%s).",
                strCollapse(as.numeric(data)), self$traits$type$strprint())
        )
      }


      if (log) {
        if (private$.log) {
          pdqr <- private$.pdf(data, log = log)
        } else {
          if ("CoreStatistics" %nin% self$decorators) {
            stop("No analytical method for log available.
Use CoreStatistics decorator to numerically estimate this.")
          } else {
            pdqr <- log(private$.pdf(data))
          }
        }
      } else {
        pdqr <- private$.pdf(data)
      }

      pdqr_returner(pdqr, simplify, self$short_name)
    },

    #' @description
    #' The (lower tail) cumulative distribution function, \eqn{F_X}, is defined as
    #'  \deqn{F_X(x) = P(X \le x)}
    #'  If \code{lower.tail} is FALSE then \eqn{1 - F_X(x)} is returned, also known as the
    #'  \code{\link{survival}} function.
    #'
    #' If available a cdf will be returned using an analytic expression. Otherwise,
    #' if the distribution has not been decorated with [FunctionImputation], \code{NULL} is
    #' returned.
    #'
    #' @param ... `(numeric())` \cr
    #' Points to evaluate the function at Arguments do not need
    #' to be named. The length of each argument corresponds to the number of points to evaluate,
    #' the number of arguments corresponds to the number of variables in the distribution.
    #' See examples.
    #'
    #' @examples
    #' b <- Binomial$new()
    #' b$cdf(1:10)
    #' b$cdf(1:10, log.p = TRUE, lower.tail = FALSE)
    #' b$cdf(data = matrix(1:10))
    cdf = function(..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE, data = NULL) {

      if (!private$.isCdf) {
        return(NULL)
      }

      if (is.null(data)) {
        if (!...length()) {
          return(NULL)
        } else if (!length(...elt(1))) {
          return(NULL)
        }
      }

      data <- pdq_point_assert(..., self = self, data = data)
      if (!suppressWarnings(self$liesInType(as.numeric(data), all = TRUE, bound = TRUE))) {
        stop(
          sprintf("Not all points in %s lie in the distribution domain (%s).",
                  strCollapse(as.numeric(data)), self$traits$type$strprint())
        )
      }

      if (log.p | !lower.tail) {
        if (private$.log) {
          pdqr <- private$.cdf(data, log.p = log.p, lower.tail = lower.tail)
        } else {
          if ("CoreStatistics" %nin% self$decorators) {
            stop("No analytical method for log.p or lower.tail available. Use CoreStatistics
decorator to numerically estimate this.")
          } else {
            pdqr <- private$.cdf(data)
            if (!lower.tail) pdqr <- 1 - pdqr
            if (log.p) pdqr <- log(pdqr)
          }
        }
      } else {
        pdqr <- private$.cdf(data)
      }

      pdqr_returner(pdqr, simplify, self$short_name)
    },

    #' @description
    #'  The quantile function, \eqn{q_X}, is the inverse cdf, i.e.
    #'  \deqn{q_X(p) = F^{-1}_X(p) = \inf\{x \in R: F_X(x) \ge p\}}{q_X(p) = F^(-1)_X(p) = inf{x \epsilon R: F_X(x) \ge p}} #nolint
    #'
    #'  If \code{lower.tail} is FALSE then \eqn{q_X(1-p)} is returned.
    #'
    #' If available a quantile will be returned using an analytic expression. Otherwise,
    #' if the distribution has not been decorated with [FunctionImputation], \code{NULL} is
    #' returned.
    #'
    #' @param ... `(numeric())` \cr
    #' Points to evaluate the function at Arguments do not need
    #' to be named. The length of each argument corresponds to the number of points to evaluate,
    #' the number of arguments corresponds to the number of variables in the distribution.
    #' See examples.
    #'
    #' @examples
    #' b <- Binomial$new()
    #' b$quantile(0.42)
    #' b$quantile(log(0.42), log.p = TRUE, lower.tail = TRUE)
    #' b$quantile(data = matrix(c(0.1,0.2)))
    quantile = function(..., lower.tail = TRUE, log.p = FALSE, simplify = TRUE, data = NULL) {

      if (!private$.isQuantile) {
        return(NULL)
      }

      if (is.null(data)) {
        if (!...length()) {
          return(NULL)
        } else if (!length(...elt(1))) {
            return(NULL)
        }
      }

      data <- pdq_point_assert(..., self = self, data = data)

      if (!log.p) {
        if (!Interval$new(0, 1)$contains(as.numeric(data), all = TRUE)) {
          stop(sprintf("Not all points in %s lie in [0, 1].", strCollapse(as.numeric(data))))
        }
      } else {
        if (!Interval$new(0, 1)$contains(as.numeric(exp(data)), all = TRUE)) {
          stop(sprintf("Not all points in %s lie in [0, 1].", strCollapse(as.numeric(exp(data)))))
        }
      }

      if (log.p | !lower.tail) {
        if (private$.log) {
          pdqr <- private$.quantile(data, log.p = log.p, lower.tail = lower.tail)
        } else {
          if ("CoreStatistics" %nin% self$decorators) {
            stop("No analytical method for log.p or lower.tail available. Use CoreStatistics
decorator to numerically estimate this.")
          } else {
            if (log.p) data <- exp(data)
            if (!lower.tail) data <- 1 - data
            pdqr <- private$.quantile(data)
          }
        }
      } else {
        pdqr <- private$.quantile(data)
      }

      pdqr_returner(pdqr, simplify, self$short_name)
    },

    #' @description
    #' The rand function draws `n` simulations from the distribution.
    #'
    #' If available simulations will be returned using an analytic expression. Otherwise,
    #' if the distribution has not been decorated with [FunctionImputation], \code{NULL} is
    #' returned.
    #'
    #' @examples
    #' b <- Binomial$new()
    #' b$rand(10)
    #'
    #' mvn <- MultivariateNormal$new()
    #' mvn$rand(5)
    rand = function(n, simplify = TRUE) {

      if (missing(n) | private$.isRand == 0L) {
        return(NULL)
      }

      if (length(n) > 1) {
        n <- length(n)
      }

      pdqr <- private$.rand(n)

      pdqr_returner(pdqr, simplify, self$short_name)
    },

    #' @description
    #' Returns the precision of the distribution as `1/self$variance()`.
    prec = function() {
      return(1 / self$variance())
    },

    #' @description
    #' Returns the standard deviation of the distribution as `sqrt(self$variance())`.
    stdev = function() {
      return(sqrt(self$variance()))
    },

    #' @description
    #' Returns the median of the distribution. If an analytical expression is available
    #' returns distribution median, otherwise if symmetric returns `self$mean`, otherwise
    #' returns `self$quantile(0.5)`.
    #' @param na.rm `(logical(1))`\cr
    #' Ignored, addded for consistency.
    #' @param ... `ANY` \cr
    #' Ignored, addded for consistency.
    median = function(na.rm = NULL, ...) {
      if (testSymmetric(self)) {
        med <- try(self$mean(), silent = TRUE)
        if (inherits(med, "try-error")) {
          return(self$quantile(0.5))
        } else if (is.null(med)) {
          return(self$quantile(0.5))
        } else {
          return(med)
        }
      } else if (!testUnivariate(self)) {
        return(NaN)
      } else {
        return(self$quantile(0.5))
      }
    },

    #' @description
    #' Inter-quartile range of the distribution. Estimated as
    #' `self$quantile(0.75) - self$quantile(0.25)`.
    iqr = function() {
      return(self$quantile(0.75) - self$quantile(0.25))
    },

    #' @description
    #' 1 or 2-sided confidence interval around distribution.
    #' @param alpha `(numeric(1))` \cr Level of confidence, default is 95%
    #' @param sides `(character(1))` \cr One of 'lower', 'upper' or 'both'
    #' @param median `(logical(1))` \cr If `TRUE` also returns median
    confidence = function(alpha = 0.95, sides = "both", median = FALSE) {
      if (sides == "both") {
        alpha <- c((1 - alpha) / 2, 1 - (1 - alpha) / 2)
      } else if (sides == "lower") {
        alpha <- 1 - alpha
      } else if (sides != "upper") {
        stop("'sides' should be one of 'lower', 'upper', or 'both'")
      }
      if (median) {
        alpha <- unique(c(alpha, 0.5))
      }
      sort(self$quantile(alpha))
    },

    #' @description
    #' If univariate returns `1`, otherwise returns the distribution correlation.
    correlation = function() {
      if (testUnivariate(self)) {
        return(1)
      } else {
        return(self$variance() / (sqrt(diag(self$variance()) %*% t(diag(self$variance())))))
      }
    },

    #' @description
    #' Tests if the given values lie in the support of the distribution.
    #' Uses `[set6::Set]$contains`.
    liesInSupport = function(x, all = TRUE, bound = FALSE) {
      return(self$properties$support$contains(x, all, bound))
    },

    #' @description
    #' Tests if the given values lie in the type of the distribution.
    #' Uses `[set6::Set]$contains`.
    liesInType = function(x, all = TRUE, bound = FALSE) {
      return(self$traits$type$contains(x, all, bound))
    },

    #' @description
    #' Returns an estimate for the computational support of the distribution.
    #' If an analytical cdf is available, then this is computed as the smallest interval
    #' in which the cdf lower bound is `0` and the upper bound is `1`, bounds are incremented in
    #' 10^i intervals. If no analytical cdf is available, then this is computed as the smallest
    #' interval in which the lower and upper bounds of the pdf are `0`, this is much less precise
    #' and is more prone to error. Used primarily by decorators.
    workingSupport = function() {

      if (testCountablyFinite(support <- private$.properties$support)) {
        return(support)
      }

      lower <- support$lower
      upper <- support$upper

      if (lower == -Inf) {
        if (private$.isCdf == 1L) {
          for (i in -c(0, 10^(1:1000))) { # nolint
            if (i >= lower & i <= upper) {
              if (self$cdf(i) == 0) {
                lower <- i
                break() # nolint
              }
            }
          }
        } else {
          for (i in -c(0, 10^(1:1000))) { # nolint
            if (i >= lower & i <= upper) {
              if (self$pdf(i) == 0) {
                lower <- i
                break() # nolint
              }
            }
          }
        }

      }

      if (upper == Inf) {
        if (private$.isCdf == 1L) {
          for (i in c(0, 10^(1:1000))) { # nolint
            if (i >= lower & i <= upper) {
              if (self$cdf(i) == 1) {
                upper <- i
                break() # nolint
              }
            }
          }
        } else {
          for (i in c(0, 10^(1:1000))) { # nolint
            if (i >= lower & i <= upper) {
              if (self$pdf(i) == 0) {
                upper <- i
                break() # nolint
              }
            }
          }
        }
      }

      class <- if (testDiscrete(self)) "integer" else "numeric"

      Interval$new(lower, upper, class = class)
    }
  ),

  active = list(
    #' @field decorators
    #' Returns decorators currently used to decorate the distribution.
    decorators = function() {
      return(private$.decorators)
    },

    #' @field traits
    #' Returns distribution traits.
    traits = function() {
      return(private$.traits)
    },

    #' @field valueSupport
    #' Deprecated, use `$traits$valueSupport`.
    valueSupport = function() {
      message("Deprecated. Use $traits$valueSupport instead.")
      return(self$traits$valueSupport)
    },

    #' @field variateForm
    #' Deprecated, use `$traits$variateForm`.
    variateForm = function() {
      message("Deprecated. Use $traits$variateForm instead.")
      return(self$traits$variateForm)
    },

    #' @field type
    #' Deprecated, use `$traits$type`.
    type = function() {
      message("Deprecated. Use $traits$type instead.")
      return(self$traits$type)
    },

    #' @field properties
    #' Returns distribution properties, including skewness type and symmetry.
    properties = function() {
      prop <- private$.properties
      prop$kurtosis <- tryCatch(exkurtosisType(self$kurtosis()), error = function(e) NULL)
      prop$skewness <- tryCatch(skewType(self$skewness()), error = function(e) NULL)
      prop
    },

    #' @field support
    #' Deprecated, use `$properties$type`.
    support = function() {
      message("Deprecated. Use $properties$support instead.")
      return(self$properties$support)
    },

    #' @field symmetry
    #' Deprecated, use `$properties$symmetry`.
    symmetry = function() {
      message("Deprecated. Use $properties$symmetry instead.")
      return(self$properties$symmetry)
    },

    #' @field sup
    #' Returns supremum (upper bound) of the distribution support.
    sup = function() {
      return(self$properties$support$upper)
    },

    #' @field inf
    #' Returns infimum (lower bound) of the distribution support.
    inf = function() {
      return(self$properties$support$lower)
    },

    #' @field dmax
    #' Returns maximum of the distribution support.
    dmax = function() {
      return(self$properties$support$max)
    },

    #' @field dmin
    #' Returns minimum of the distribution support.
    dmin = function() {
      return(self$properties$support$min)
    },

    #' @field kurtosisType
    #' Deprecated, use `$properties$kurtosis`.
    kurtosisType = function() {
      message("Deprecated. Use $properties$kurtosis instead.")
      return(self$properties$kurtosis)
    },

    #' @field skewnessType
    #' Deprecated, use `$properties$skewness`.
    skewnessType = function() {
      message("Deprecated. Use $properties$skewness instead.")
      return(self$properties$skewness)
    }
  ),

  private = list(
    .parameters = NULL,
    .decorators = NULL,
    .properties = list(),
    .traits = NULL,
    .variates = 1,
    .isPdf = 0L,
    .isCdf = 0L,
    .isQuantile = 0L,
    .isRand = 0L,
    .log = FALSE,
    .updateDecorators = function(decs) {
      private$.decorators <- decs
    }
  )
)

#' @export
as.character.Distribution <- function(x, n, ...) {
  if (length(x$parameters()) != 0) {
    p <- sort_named_list(x$parameters()$values)
    lng <- length(p)
    if (lng > (2 * n)) {
      string <- paste0(
        x$short_name, "(",
        paste(names(p)[1:n], p[1:n], sep = " = ", collapse = ", "),
        ",...,", paste(names(p)[(lng - n + 1):lng], p[(lng - n + 1):lng],
          sep = " = ",
          collapse = ", "
        ), ")"
      )
    } else {
      string <- paste0(
        x$short_name, "(", paste(names(p), p, sep = " = ", collapse = ", "),
        ")"
      )
    }
  } else {
    string <- paste0(x$short_name, "()")
  }
  string
}

#' @export
summary.Distribution <- function(object, ...) {
  object$summary(...)
}

Try the distr6 package in your browser

Any scripts or data that you put into this service are public.

distr6 documentation built on March 28, 2022, 1:05 a.m.