Nothing
#' Summarizing the Results for the Bayesian Nonparametric Model for Ecological
#' Inference in 2x2 Tables
#'
#' \code{summary} method for class \code{ecoNP}.
#'
#'
#' @aliases summary.ecoNP
#' @param object An output object from \code{ecoNP}.
#' @param CI A vector of lower and upper bounds for the Bayesian credible
#' intervals used to summarize the results. The default is the equal tail 95
#' percent credible interval.
#' @param param Logical. If \code{TRUE}, the posterior estimates of the
#' population parameters will be provided. The default value is \code{FALSE}.
#' @param units Logical. If \code{TRUE}, the in-sample predictions for each
#' unit or for a subset of units will be provided. The default value is
#' \code{FALSE}.
#' @param subset A numeric vector indicating the subset of the units whose
#' in-sample predications to be provided when \code{units} is \code{TRUE}. The
#' default value is \code{NULL} where the in-sample predictions for each unit
#' will be provided.
#' @param ... further arguments passed to or from other methods.
#' @return \code{summary.ecoNP} yields an object of class \code{summary.ecoNP}
#' containing the following elements:
#' \item{call}{The call from \code{ecoNP}.}
#' \item{n.obs}{The number of units.}
#' \item{n.draws}{The number of Monte Carlo samples.}
#' \item{agg.table}{Aggregate posterior estimates of the marginal
#' means of \eqn{W_1} and \eqn{W_2} using \eqn{X} and \eqn{N} as weights.} If
#' \code{param = TRUE}, the following elements are also included:
#' \item{param.table}{Posterior estimates of model parameters: population mean
#' estimates of \eqn{W_1} and \eqn{W_2}. If \code{subset} is specified, only a
#' subset of the population parameters are included.} If \code{unit = TRUE},
#' the following elements are also included:
#' \item{W1.table}{Unit-level posterior estimates for \eqn{W_1}.}
#' \item{W2.table}{Unit-level posterior estimates for \eqn{W_2}.}
#'
#' This object can be printed by \code{print.summary.ecoNP}
#' @seealso \code{ecoNP}, \code{predict.eco}
#' @keywords methods
#' @export
summary.ecoNP <- function(object, CI=c(2.5, 97.5), param=FALSE, units=FALSE, subset=NULL,...) {
n.obs <- ncol(object$W[,1,])
n.draws <- nrow(object$W[,1,])
if (is.null(subset)) subset <- 1:n.obs
else if (!is.numeric(subset)) stop("Subset should be a numeric vector.")
else if (!all(subset %in% c(1:n.obs))) stop("Subset should be any numbers in 1:obs.")
table.names<-c("mean", "std.dev", paste(min(CI), "%", sep=" "), paste(max(CI), "%", sep=" "))
agg.table <-agg.wtable <-NULL
N<-rep(1, length(object$X))
W1.agg.mean <- as.vector(object$W[,1,]%*% (object$X*N/sum(object$X*N)))
W2.agg.mean <- as.vector(object$W[,2,]%*% ((1-object$X)*N/sum((1-object$X)*N)))
agg.table <- rbind(cbind(mean(W1.agg.mean), sd(W1.agg.mean),
quantile(W1.agg.mean, min(CI)/100),
quantile(W1.agg.mean, max(CI)/100)),
cbind(mean(W2.agg.mean), sd(W2.agg.mean),
quantile(W2.agg.mean, min(CI)/100),
quantile(W2.agg.mean, max(CI)/100)))
colnames(agg.table) <- table.names
rownames(agg.table) <- c("W1", "W2")
if (!is.null(object$N)) {
N <- object$N
W1.agg.wmean <- as.vector(object$W[,1,] %*% (object$X*N/sum(object$X*N)))
W2.agg.wmean <- as.vector(object$W[,2,] %*% ((1-object$X)*N/sum((1-object$X)*N)))
agg.wtable <- rbind(cbind(mean(W1.agg.wmean), sd(W1.agg.wmean),
quantile(W1.agg.wmean, min(CI)/100),
quantile(W1.agg.wmean, max(CI)/100)),
cbind(mean(W2.agg.wmean), sd(W2.agg.wmean),
quantile(W2.agg.wmean, min(CI)/100),
quantile(W2.agg.wmean, max(CI)/100)))
colnames(agg.wtable) <- table.names
rownames(agg.wtable) <- c("W1", "W2")
}
if (units) {
W1.table <- cbind(apply(object$W[,1,subset], 2, mean),
apply(object$W[,1,subset], 2, sd),
apply(object$W[,1,subset], 2, quantile, min(CI)/100),
apply(object$W[,1,subset], 2, quantile, max(CI)/100))
W2.table <- cbind(apply(object$W[,2,subset], 2, mean),
apply(object$W[,2,subset], 2, sd),
apply(object$W[,2,subset], 2, quantile, min(CI)/100),
apply(object$W[,2,subset], 2, quantile, max(CI)/100))
colnames(W2.table) <- colnames(W1.table) <- table.names
rownames(W1.table) <- rownames(W2.table) <- row.names(object$X[subset])
}
else
W1.table <- W2.table <- NULL
if (is.null(param)) param <- FALSE
if (param) {
if (is.null(object$mu) || is.null(object$Sigma))
stop("Parameters are missing values.")
}
if (param) {
mu1.table <- cbind(apply(object$mu[,1,subset], 2, mean),
apply(object$mu[,1,subset], 2, sd),
apply(object$mu[,1,subset], 2, quantile, min(CI)/100),
apply(object$mu[,1,subset], 2, quantile, max(CI)/100))
mu2.table <- cbind(apply(object$mu[,2,subset], 2, mean),
apply(object$mu[,2,subset], 2, sd),
apply(object$mu[,2,subset], 2, quantile, min(CI)/100),
apply(object$mu[,2,subset], 2, quantile, max(CI)/100))
Sigma11.table <- cbind(apply(object$Sigma[,1,subset], 2, mean),
apply(object$Sigma[,1,subset], 2, sd),
apply(object$Sigma[,1,subset], 2, quantile, min(CI)/100),
apply(object$Sigma[,1,subset], 2, quantile, max(CI)/100))
Sigma12.table <- cbind(apply(object$Sigma[,2,subset], 2, mean),
apply(object$Sigma[,2,subset], 2, sd),
apply(object$Sigma[,2,subset], 2, quantile, min(CI)/100),
apply(object$Sigma[,2,subset], 2, quantile, max(CI)/100))
Sigma22.table <- cbind(apply(object$Sigma[,3,subset], 2, mean),
apply(object$Sigma[,3,subset], 2, sd),
apply(object$Sigma[,3,subset], 2, quantile, min(CI)/100),
apply(object$Sigma[,3,subset], 2, quantile, max(CI)/100))
colnames(mu1.table) <- colnames(mu2.table) <- table.names
colnames(Sigma11.table) <- colnames(Sigma12.table) <- colnames(Sigma22.table) <- table.names
param.table=list(mu1.table=mu1.table,mu2.table=mu2.table,Sigma11.table=Sigma11.table,Sigma12.table=Sigma12.table,Sigma22.table=Sigma22.table)
}
else
param.table <- NULL
ans <- list(call = object$call, W1.table = W1.table, W2.table = W2.table,
agg.table = agg.table, agg.wtable=agg.wtable,
param.table = param.table,
n.draws = n.draws, n.obs = n.obs)
class(ans) <-c("summary.eco", "summary.ecoNP")
return(ans)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.