Nothing
##############################################################################################
##############################################################################################
# @describeIn map_neon_data_to_ecocomDP This method will retrieve count data for TICK taxa from neon.data.product.id DP1.10093.001 from the NEON data portal and map to the ecocomDP format
##############################################################################################
# mapping function for TICK taxa
map_neon.ecocomdp.10093.001.001 <- function(
neon.data.list,
neon.data.product.id = "DP1.10093.001",
...){
# Download and clean tick data
#NEON target taxon group is SMALL_MAMMALS
neon_method_id <- "neon.ecocomdp.10093.001.001"
# make sure neon.data.list matches the method
if(!any(grepl(
neon.data.product.id %>% gsub("^DP1\\.","",.) %>% gsub("\\.001$","",.),
names(neon.data.list)))) stop(
"This dataset does not appeaer to be sourced from NEON ",
neon.data.product.id,
" and cannot be mapped using method ",
neon_method_id)
### Get the Data
Tick_all <- neon.data.list
# unlist
tck_taxonomyProcessed = Tick_all$tck_taxonomyProcessed
tck_fielddata = Tick_all$tck_fielddata
# NOTES ON GENERAL DATA ISSUES #
# Issue 1: the latency between field (30 days) and lab (300 days) is different
# In 2019, tick counts were switched over to the lab instead of the field
# If the samples aren't processed yet, there will be an NA for some or all the counts (regardless of whether ticks were present)
# If targetTaxaPresent == "N" we will assign the counts a 0 (there is no lab data pending)
# If targetTaxaPresent == "Y" but no associated field record, we will keep counts as NA but define that there are counts pending
# Yearly trends may show issues for recent years because ONLY 0s are in.
# Issue 2: larva counts
# larvae were not always counted or ID'd in earlier years
# there are excess larvae counted in the field but not IDd in the lab -- assign these to order level
# Issue 3: discrepancies between field counts and lab counts
# Often lab counts are less than field because they stop counting at a certain limit
# This is not always recorded in the same way
# Other times ticks were miscounted or lost on either end
# Probably OK to ignore most minor issues, and make best attempt at more major issues
# Drop remaining records that are confusing
#### NAs
# replace empty characters with NAs instead of ""
repl_na <- function(x) ifelse(x=="", NA, x)
# CLEAN TICK TAXONOMY DATA #
### replace "" with NA
tck_tax_filtered <- dplyr::mutate_if(
tck_taxonomyProcessed, .predicate = is.character, .funs = repl_na) %>%
tidyr::as_tibble()
### only retain lab records that have associated field data
tck_tax_filtered <- dplyr::filter(tck_tax_filtered, sampleID %in% tck_fielddata$sampleID) # none lost
### check sample quality flags
# retain only samples deemed "OK"
tck_tax_filtered <- dplyr::filter(tck_tax_filtered, sampleCondition == "OK")
### require date and taxon ID
# samples without id's are not ticks! (n = 3) remove them
tck_tax_filtered <- dplyr::filter(tck_tax_filtered, !is.na(acceptedTaxonID))
# require a date (no records are lost)
tck_tax_filtered <- dplyr::filter(tck_tax_filtered, !is.na(identifiedDate))
### sex or age columns
# required (no records are lost)
tck_tax_filtered <- dplyr::filter(tck_tax_filtered, !is.na(sexOrAge))
# require counts (no records are lost)
tck_tax_filtered <- dplyr::filter(tck_tax_filtered, !is.na(individualCount))
# create a lifestage column so tax counts can be compared to field data
tck_tax_filtered <- dplyr::mutate(
tck_tax_filtered,
lifeStage = dplyr::case_when(
sexOrAge == "Male" |
sexOrAge == "Female" |
sexOrAge == "Adult" ~ "Adult",
sexOrAge == "Larva" ~ "Larva",
sexOrAge == "Nymph" ~ "Nymph"))
### rename taxonomy columns distinctly from field data
# rename columns containing data unique to each dataset
colnames(tck_fielddata)[colnames(tck_fielddata)=="uid"] <- "uid_field"
colnames(tck_fielddata)[colnames(tck_fielddata)=="sampleCondition"] <- "sampleCondition_field"
colnames(tck_fielddata)[colnames(tck_fielddata)=="remarks"] <- "remarks_field"
colnames(tck_fielddata)[colnames(tck_fielddata)=="publicationDate"] <- "publicationDate_field"
colnames(tck_tax_filtered)[colnames(tck_tax_filtered)=="uid"] <- "uid_tax"
colnames(tck_tax_filtered)[colnames(tck_tax_filtered)=="sampleCondition"] <- "sampleCondition_tax"
colnames(tck_tax_filtered)[colnames(tck_tax_filtered)=="remarks"] <- "remarks_tax"
colnames(tck_tax_filtered)[colnames(tck_tax_filtered)=="publicationDate"] <- "publicationDate_tax"
if("dataQF" %in% names(tck_tax_filtered)){
colnames(tck_tax_filtered)[colnames(tck_tax_filtered)=="dataQF"] <- "dataQF_tax"
}else{
tck_tax_filtered[,"dataQF_tax"] <- NA_character_
}
if("dataQF" %in% names(tck_fielddata)){
colnames(tck_fielddata)[colnames(tck_fielddata)=="dataQF"] <- "dataQF_field"
}else{
tck_fielddata[,"dataQF_field"] <- NA_character_
}
# merge counts from male/female into one adult class
# summing male and female counts (assuming biodiversity analyses won't be sex specific)
tck_tax_wide <- tck_tax_filtered %>%
dplyr::group_by(sampleID, acceptedTaxonID, lifeStage) %>%
dplyr::summarise(individualCount = sum(individualCount, na.rm = TRUE)) %>%
# now make it wide; only one row per sample id
tidyr::pivot_wider(
id_cols = sampleID,
names_from = c(acceptedTaxonID, lifeStage),
values_from = individualCount, values_fill = 0) %>%
dplyr::ungroup()
# each row is now a unique sample id (e.g. a site x species matrix)
# CLEAN TICK FIELD DATA #
tck_fielddata = dplyr::mutate_if(
tck_fielddata,
.predicate = is.character,
.funs = repl_na)
#### Quality Flags
# remove samples that had logistical issues
# keep only those with NA in samplingImpractical
# this is ~11% as of 2020 (many related to COVID)
tck_fielddata_filtered = dplyr::filter(
tck_fielddata,
is.na(samplingImpractical)|samplingImpractical == "OK")
# make sure all record with ticks were assigned a sample ID
tck_fielddata_filtered = dplyr::filter(
tck_fielddata_filtered,
!(targetTaxaPresent=="Y" & is.na(sampleID)))
# MERGE AND RESOLVE COUNTS #
#### merge the field and lab data and figure out where counts disagree (pre-2019)
# add non-existent columns to eventually put unidentified counts into
if(!"IXOSP2_Adult" %in% colnames(tck_tax_wide)) {tck_tax_wide$IXOSP2_Adult <- 0}
if(!"IXOSP2_Nymph" %in% colnames(tck_tax_wide)) {tck_tax_wide$IXOSP2_Nymph <- 0}
if(!"IXOSP2_Larva" %in% colnames(tck_tax_wide)) {tck_tax_wide$IXOSP2_Larva <- 0}
# get a list of columns containing taxonomic counts
tax_cols = tck_tax_wide %>%
dplyr::ungroup() %>%
dplyr::select(-sampleID) %>%
colnames()
#### left-join field data to lab data using sample ID
tck_merged = tck_fielddata_filtered %>%
dplyr::left_join(tck_tax_wide, by = "sampleID")
# add in the lab taxonomy remarks
tck_merged = tck_tax_filtered %>%
dplyr::filter(!is.na(dataQF_tax)) %>%
dplyr::group_by(sampleID) %>%
dplyr::summarise(
dataQF_tax = paste0(dataQF_tax, collapse = " "),
remarks_tax = paste0(remarks_tax, collapse = " ")) %>%
dplyr::select(sampleID, dataQF_tax, remarks_tax) %>%
dplyr::ungroup() %>%
dplyr::right_join(tck_merged)
#### fill in 0s
# if target taxa are not present, fill counts as 0s
for(i in 1:length(tax_cols)){
tck_merged[
which(tck_merged$targetTaxaPresent =="N"),
which(colnames(tck_merged) == tax_cols[i])] <- 0
} # this will fill in recent years data too
### get totals from the lab for comparisons to field counts
tck_merged <- tck_merged %>%
dplyr::mutate(
Total_Lab_Adult = rowSums(dplyr::across(contains("_Adult"))),
Total_Lab_Nymph = rowSums(dplyr::across(contains("_Nymph"))),
Total_Lab_Larva = rowSums(dplyr::across(contains("_Larva"))))
###### get rid of/fix data with missing info
# 2014 and 2015 have some missing field larvae count
# filter to samples where there is no field larvae count but there is a lab larvae count
field_larvae_na = dplyr::filter(tck_merged, targetTaxaPresent=="Y") %>%
dplyr::filter(is.na(larvaCount), !is.na(Total_Lab_Larva)) %>%
dplyr::mutate(year = lubridate::year(collectDate)) %>%
dplyr::filter(year<2019) %>%
dplyr::filter(!is.na(adultCount), !is.na(nymphCount)) %>%
dplyr::pull(sampleID)
# replace the field larvae counts with the lab larvae count (not really necessary as we will be using the field data anyways)
tck_merged$larvaCount[which(tck_merged$sampleID%in%field_larvae_na)] <- tck_merged$Total_Lab_Larva[which(tck_merged$sampleID%in%field_larvae_na)]
# check for other samples where there are missing counts prior to 2019
# drop those records
# filter to samples where there is a NA in one of the field counts and it is prior to 2019
# these are mostly legacy data and are not very abundant
no_counts <- dplyr::filter(tck_merged, targetTaxaPresent=="Y") %>%
dplyr::filter(is.na(adultCount)|is.na(larvaCount)|is.na(nymphCount)) %>%
dplyr::mutate(year = lubridate::year(collectDate)) %>%
dplyr::filter(year<2019) %>% dplyr::pull(sampleID)
tck_merged <- dplyr::filter(tck_merged, !sampleID %in% no_counts)
rm(field_larvae_na, no_counts)
#### get summed lab vs. field counts for comparisons ####
tck_merged <- tck_merged %>%
dplyr::rowwise() %>%
dplyr::mutate(
totalFieldCount = sum(adultCount, larvaCount, nymphCount), # calculate total tick count from field data
totalLabCount = sum(Total_Lab_Adult, Total_Lab_Nymph, Total_Lab_Larva)) %>% # calculate total tick count from lab data
dplyr::ungroup()
# check for field data that don't have associated lab data
# e.g. there is a field count but no taxonomy
# these should be removed as we don't know the species
missing_lab <- dplyr::filter(
tck_merged, !is.na(totalFieldCount) & is.na(totalLabCount)) %>%
dplyr::pull(sampleID)
tck_merged <- dplyr::filter(tck_merged, !(!is.na(sampleID) & sampleID %in% missing_lab))
rm(missing_lab)
# FIX COUNT DISCREPANCIES
# first flag where we have discrepancies in count that we need to fix
tck_merged <- tck_merged %>%
dplyr::mutate(
Discrepancy = dplyr::case_when(
is.na(adultCount) & is.na(nymphCount) &
is.na(larvaCount) & targetTaxaPresent=="Y" &
!is.na(totalLabCount) ~"LAB COUNT ONLY", # no field counts but lab counts exist (2019 onwards)
(is.na(adultCount) | is.na(nymphCount) | is.na(larvaCount)) &
targetTaxaPresent=="Y" &
lubridate::year(collectDate)>2018 ~"COUNT PENDING", # still waiting on lab counts
totalFieldCount==0 & totalLabCount == 0 ~ "NONE", # no ticks; no discrepancy
totalFieldCount >0 & totalLabCount > 0 & totalFieldCount==totalLabCount~"NONE", # matching counts; no discrepancy
targetTaxaPresent=="N"~"NONE", # no ticks; no discrepancy
totalFieldCount > totalLabCount ~ "FIELD COUNT GREATER",
totalFieldCount < totalLabCount ~ "LAB COUNT GREATER"
))
## FIX COUNTS 1: ONLY A SUBSET OF LARVAE WERE SAMPLED/COUNTED
# if there are more larvae in the field than lab and a quality flag add the remaining larvae to unidentified order
add_unknown_larvae <- tck_merged %>%
dplyr::filter(dataQF_tax == "ID lab count subsample of total field larvae") %>% # flag indicating the lab didn't count all larvae
dplyr::filter(Discrepancy == "FIELD COUNT GREATER") %>% # larvae in the field > larvae in lab
dplyr::filter((larvaCount - Total_Lab_Larva)==(totalFieldCount-totalLabCount)) %>% # if the discrepancy in larvae is equal to the entire discrepancy
dplyr::pull(sampleID) # if so, pull those sample IDs
tck_merged <- tck_merged %>%
dplyr::mutate(
IXOSP2_Larva = dplyr::case_when(
sampleID %in% add_unknown_larvae ~ IXOSP2_Larva + totalFieldCount - totalLabCount, # add discrepancy in larvae to the order level (IXOSP2_Larva)
TRUE ~ IXOSP2_Larva
))
tck_merged$Discrepancy[tck_merged$sampleID %in% add_unknown_larvae] <- "FIXED" # remove the flag
rm(add_unknown_larvae)
# if there are more larvae in the field than lab and there is a note about invoicing, add remaining larvae
add_unknown_larvae <- tck_merged %>%
dplyr::filter(stringr::str_detect(remarks_tax, "invoice")) %>% # flag that the lab reached an invoicing limit
dplyr::filter(Discrepancy == "FIELD COUNT GREATER") %>%
dplyr::filter((larvaCount - Total_Lab_Larva)==(totalFieldCount-totalLabCount)) %>% # if the discrepancy in larvae is equal to the entire discrepancy
dplyr::pull(sampleID) # if so pull those sample IDs
tck_merged <- tck_merged %>%
dplyr::mutate(IXOSP2_Larva = dplyr::case_when(
sampleID %in% add_unknown_larvae ~ IXOSP2_Larva + totalFieldCount - totalLabCount, # add discrepancy to the order level
TRUE~IXOSP2_Larva))
tck_merged$Discrepancy[tck_merged$sampleID %in% add_unknown_larvae] <- "FIXED" # remove the flag
rm(add_unknown_larvae)
# another indicator that not all the larvae were counted
add_unknown_larvae <- tck_merged %>%
dplyr::filter(stringr::str_detect(remarks_tax, "possibly subsampled in ID lab counts")) %>% # flag indicating the lab didn't count all larvae
dplyr::filter(Discrepancy == "FIELD COUNT GREATER") %>%
dplyr::filter((larvaCount - Total_Lab_Larva)==(totalFieldCount-totalLabCount)) %>% # if the discrepancy in larvae is equal to the entire discrepancy
dplyr::pull(sampleID) # if so pull those sample IDs
tck_merged <- tck_merged %>%
dplyr::mutate(
IXOSP2_Larva = dplyr::case_when(
sampleID %in% add_unknown_larvae ~ IXOSP2_Larva + totalFieldCount - totalLabCount, # add discrepancy to the order level
TRUE~IXOSP2_Larva))
tck_merged$Discrepancy[tck_merged$sampleID %in% add_unknown_larvae] <- "FIXED"
rm(add_unknown_larvae)
## do the same for nymphs
add_unknown_nymph <- tck_merged %>%
dplyr::filter(
stringr::str_detect(remarks_tax, "possibly subsampled in ID lab counts")) %>% # flag indicating the lab didn't count all larvae
dplyr::filter(Discrepancy == "FIELD COUNT GREATER") %>%
dplyr::filter((nymphCount - Total_Lab_Nymph)==(totalFieldCount-totalLabCount)) %>% # if the discrepancy in nymphs is equal to the entire discrepancy
dplyr::pull(sampleID)
tck_merged <- tck_merged %>%
dplyr::mutate(
IXOSP2_Nymph= dplyr::case_when(
sampleID %in% add_unknown_nymph ~ IXOSP2_Nymph + totalFieldCount - totalLabCount, # add discrepancy to the order level
TRUE~IXOSP2_Nymph))
tck_merged$Discrepancy[tck_merged$sampleID %in% add_unknown_nymph] <- "FIXED"
rm(add_unknown_nymph)
## FIX COUNTS 2: LARVA COUNT RECORDED AS 1
# NEON working on fixing this one
# in some years, the lab accidentally put larvae as 1 but the field count says it should be higher
add_unknown_larvae <- tck_merged %>%
dplyr::filter(Discrepancy == "FIELD COUNT GREATER") %>%
dplyr::filter(stringr::str_detect(dataQF_tax, "field larva count higher")) %>%
dplyr::filter(lubridate::year(collectDate) %in% c(2016, 2017)) %>%
dplyr::filter(Total_Lab_Larva==1) %>% # flag indicating the lab assigned all as a 1
dplyr::filter((larvaCount - Total_Lab_Larva)==(totalFieldCount-totalLabCount)) %>%
dplyr::pull(sampleID)
tck_merged = tck_merged %>%
dplyr::mutate(
IXOSP2_Larva = dplyr::case_when(
sampleID %in% add_unknown_larvae ~
IXOSP2_Larva + totalFieldCount - totalLabCount, # add discrepancy to the order level
TRUE~IXOSP2_Larva))
tck_merged$Discrepancy[tck_merged$sampleID %in% add_unknown_larvae] <- "FIXED"
rm(add_unknown_larvae)
add_unknown_larvae <- tck_merged %>%
dplyr::filter(Discrepancy == "FIELD COUNT GREATER") %>%
dplyr::filter(dataQF_field == "field larva count higher than ID lab (PDE >25%)") %>%
dplyr::filter(Total_Lab_Larva == 1) %>%
dplyr::pull(sampleID)
tck_merged <- tck_merged %>%
dplyr::mutate(
IXOSP2_Larva = dplyr::case_when(
sampleID %in% add_unknown_larvae ~ IXOSP2_Larva + totalFieldCount - totalLabCount, # add discrepancy to the order level
TRUE~IXOSP2_Larva))
tck_merged$Discrepancy[tck_merged$sampleID %in% add_unknown_larvae] <- "FIXED"
rm(add_unknown_larvae)
## FIX COUNTS 3: ADULTS WENT MISSING
add_unknown_adult <- tck_merged %>%
dplyr::filter(Discrepancy == "FIELD COUNT GREATER") %>%
dplyr::filter(dataQF_field == "field adult count higher than ID lab (PDE >25%)") %>% # a few missing adults
dplyr::pull(sampleID)
tck_merged <- tck_merged %>%
dplyr::mutate(
IXOSP2_Adult = dplyr::case_when(
sampleID %in% add_unknown_adult ~ IXOSP2_Adult + totalFieldCount - totalLabCount, # add discrepancy to the order level
TRUE~IXOSP2_Adult))
tck_merged$Discrepancy[tck_merged$sampleID %in% add_unknown_adult] <- "FIXED"
rm(add_unknown_adult)
## FIX COUNTS 4: IGNORE MINOR DISCREPANCIES
# if the difference is small, we will use the taxonomy data and ignore the discrepancy
# less than 5 individuals
minor_discrep = tck_merged %>%
dplyr::filter(Discrepancy == "FIELD COUNT GREATER", totalFieldCount-totalLabCount<5) %>%
dplyr::pull(sampleID) # get records where the differences < 5 ticks
tck_merged$Discrepancy[tck_merged$sampleID %in% minor_discrep] <- "MINOR"
rm(minor_discrep)
# less than 10%
minor_discrep <- tck_merged %>%
dplyr::filter(
Discrepancy == "FIELD COUNT GREATER",
(totalFieldCount-totalLabCount)/totalFieldCount<.1) %>%
dplyr::pull(sampleID) # records where the difference is <10%
tck_merged$Discrepancy[tck_merged$sampleID %in% minor_discrep] <- "MINOR"
rm(minor_discrep)
## FIX COUNTS 6: MORE THAN ONE ERROR
# wrong lifestage ID and wrong counts...
# more than 500 larvae -- the lab will not count all of them
add_unknown_larvae <- tck_merged %>%
dplyr::filter(Discrepancy == "FIELD COUNT GREATER",
larvaCount>Total_Lab_Larva, larvaCount>500) %>%
dplyr::pull(sampleID)
tck_merged <- tck_merged %>%
dplyr::mutate(
IXOSP2_Larva = dplyr::case_when(
sampleID %in% add_unknown_larvae ~ IXOSP2_Larva + totalFieldCount - totalLabCount, # add discrepancy to the order level
TRUE~IXOSP2_Larva))
tck_merged$Discrepancy[tck_merged$sampleID %in% add_unknown_larvae] <- "FIXED"
rm(add_unknown_larvae)
## GET RID OF ANY UNSOLVED MYSTERIES
# if less than 1 percent of records are unresolved, get rid of them
if((tck_merged %>%
dplyr::filter(Discrepancy =="FIELD COUNT GREATER") %>%
nrow())/nrow(tck_merged) < 0.05){
tck_merged <- tck_merged %>%
dplyr::filter(Discrepancy !="FIELD COUNT GREATER")
}
# table(tck_merged$Discrepancy)
#### OTHER Q/C STEPS
# add a column to designate samples for which counts have not been assigned yet
# this is for recent data where the field info is published but no associated lab data
tck_merged <- tck_merged %>%
dplyr::mutate(
COUNT_PENDING = dplyr::case_when(
targetTaxaPresent == "Y" &
(is.na(adultCount) | is.na(larvaCount) | is.na(nymphCount)) &
is.na(totalLabCount)~"Y",
!is.na(totalLabCount)~"N"))
#### Final notes on count data
# note that some of these could have a "most likely" ID assigned based on what the majority of IDs are
# for now don't attempt to assign.
# the user can decide what to do with the IXOSP2 later (e.g. assign to lower taxonomy)
# from this point on, trust lab rather than field counts because lab were corrected if discrepancy exists
rm(repl_na, tax_cols)
# RESHAPE FINAL DATASET
# will depend on the end user but creating two options
# note that for calculation of things like richness, might want to be aware of the level of taxonomic resolution
taxon.cols <- tck_merged %>%
dplyr::select(-contains("Total")) %>%
dplyr::select(contains(c("_Larva", "_Nymph", "_Adult"))) %>%
colnames() # columns containing counts per taxon
### option 1) long form data including 0s
# get rid of excess columns (user discretion)
tck_merged_final <- tck_merged %>%
dplyr::select(-Discrepancy, -totalLabCount,
-totalFieldCount, -Total_Lab_Adult, -Total_Lab_Larva,
-Total_Lab_Nymph,
# -publicationDate_field,
-measuredBy,
-larvaCount, -nymphCount, -adultCount,
-coordinateUncertainty, -elevationUncertainty,
-samplingImpractical, -dataQF_field,
# -remarks_field,
# -remarks_tax
) %>%
dplyr::rename(countPending = COUNT_PENDING)
# long form data
tck_merged_final <- tck_merged_final %>%
tidyr::pivot_longer(
cols = all_of(taxon.cols),
names_to = "Species_LifeStage",
values_to = "IndividualCount") %>%
tidyr::separate(
Species_LifeStage,
into = c("acceptedTaxonID", "LifeStage"),
sep = "_", remove = FALSE)
# add in taxonomic resolution
tax_rank <- tck_taxonomyProcessed %>%
dplyr::group_by(acceptedTaxonID) %>%
dplyr::summarise(
taxonRank = dplyr::first(taxonRank),
scientificName = dplyr::first(scientificName))
tck_merged_final <- tck_merged_final %>%
dplyr::left_join(tax_rank, by = "acceptedTaxonID")
# flat data to map to ecocomDP
data_tick <- tck_merged_final %>%
dplyr::rename(
taxonID = acceptedTaxonID) %>%
dplyr::filter(
!is.na(totalSampledArea),
totalSampledArea > 0,
is.finite(totalSampledArea))
# replace NA counts with zeroes
data_tick$IndividualCount[is.na(data_tick$IndividualCount)] <- 0
# only keep records with counts that make sense
data_tick <- data_tick %>%
dplyr::filter(
!is.na(IndividualCount),
IndividualCount >= 0,
is.finite(IndividualCount))
#location ----
table_location_raw <- data_tick %>%
dplyr::select(domainID, siteID, plotID, namedLocation,
decimalLatitude, decimalLongitude, elevation,
nlcdClass, plotType,
geodeticDatum) %>%
apply(2, as.character) %>% as.data.frame() %>%
dplyr::distinct()
table_location <- make_neon_location_table(
loc_info = table_location_raw,
loc_col_names = c("domainID", "siteID", "plotID", "namedLocation"))
table_location_ancillary <- make_neon_ancillary_location_table(
loc_info = table_location_raw,
loc_col_names = c("domainID", "siteID", "plotID", "namedLocation"),
ancillary_var_names = c("namedLocation", "nlcdClass", "plotType",
"geodeticDatum"))
# taxon ----
my_dots <- list(...)
if("token" %in% names(my_dots)){
my_token <- my_dots$token
}else{
my_token <- NA
}
# get tick taxon table from NEON
neon_tick_taxon_table <- neonOS::getTaxonList(
taxonType = "TICK", token = my_token) %>%
dplyr::filter(taxonID %in% data_tick$taxonID)
table_taxon <- neon_tick_taxon_table %>%
dplyr::select(taxonID, taxonRank, scientificName, nameAccordingToID) %>%
dplyr::distinct() %>%
dplyr::rename(taxon_id = taxonID,
taxon_rank = taxonRank,
taxon_name = scientificName,
authority_system = nameAccordingToID) %>%
dplyr::select(taxon_id,
taxon_rank,
taxon_name,
authority_system)
# observation ----
my_package_id <- paste0(
neon_method_id, ".", format(Sys.time(), "%Y%m%d%H%M%S"))
table_observation_all <- data_tick %>%
# dplyr::filter(!is.na(totalSampledArea) & totalSampledArea > 0) %>%
dplyr::distinct() %>%
# dplyr::rename(location_id, plotID, trapID) %>%
dplyr::rename(location_id = namedLocation) %>%
# package id
dplyr::mutate(
package_id = my_package_id) %>%
dplyr:: rename(
neon_event_id = eventID,
datetime = collectDate,
taxon_id = taxonID) %>%
dplyr::mutate(
observation_id = paste0("obs_",1:nrow(.)),
# event_id = observation_id,
event_id = paste0(plotID, "_", datetime), #equal to sampleID, but there are NAs for sampleIDs in the data
variable_name = "abundance",
value = IndividualCount/totalSampledArea,
unit = "count per square meter")
table_observation <- table_observation_all %>%
dplyr::select(
observation_id,
event_id,
package_id,
location_id,
datetime,
taxon_id,
variable_name,
value,
unit) %>%
dplyr::filter(!is.na(taxon_id))
table_observation_ancillary <- make_neon_ancillary_observation_table(
obs_wide = table_observation_all,
ancillary_var_names = c(
"observation_id",
"neon_event_id",
# "sampleID",
"LifeStage",
"samplingMethod",
"totalSampledArea",
"targetTaxaPresent",
"remarks_field",
"identificationReferences",
"release",
"publicationDate"
)) %>%
dplyr::mutate(
unit = dplyr::case_when(
variable_name == "totalSampledArea" ~ "square meter"))
# data summary ----
# make dataset_summary -- required table
years_in_data <- table_observation$datetime %>% lubridate::year()
# years_in_data %>% ordered()
table_dataset_summary <- data.frame(
package_id = table_observation$package_id[1],
original_package_id = neon.data.product.id,
length_of_survey_years = max(years_in_data) - min(years_in_data) + 1,
number_of_years_sampled = years_in_data %>% unique() %>% length(),
std_dev_interval_betw_years = years_in_data %>%
unique() %>% sort() %>% diff() %>% stats::sd(),
max_num_taxa = table_taxon$taxon_id %>% unique() %>% length()
)
# return tables ----
out_list <- list(
location = table_location,
location_ancillary = table_location_ancillary,
taxon = table_taxon,
observation = table_observation,
observation_ancillary = table_observation_ancillary,
dataset_summary = table_dataset_summary)
return(out_list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.