Nothing
##############################################################################################
# @describeIn map_neon_data_to_ecocomDP This method will retrieve density data for ALGAE from neon.data.product.id DP1.20166.001 (Periphyton, seston, and phytoplankton collection) from the NEON data portal and map to the ecocomDP format
##############################################################################################
map_neon.ecocomdp.20166.001.001 <- function(
neon.data.list,
neon.data.product.id = "DP1.20166.001",
...
){
#NEON target taxon group is ALGAE
neon_method_id <- "neon.ecocomdp.20166.001.001"
# make sure neon.data.list matches the method
if(!any(grepl(
neon.data.product.id %>% gsub("^DP1\\.","",.) %>% gsub("\\.001$","",.),
names(neon.data.list)))) stop(
"This dataset does not appeaer to be sourced from NEON ",
neon.data.product.id,
" and cannot be mapped using method ",
neon_method_id)
# get all tables
all_tabs_in <- neon.data.list
# tables needed for ALGAE to populate the ecocomDP tables
if("alg_fieldData" %in% names(all_tabs_in)){
field_data_in <- all_tabs_in$alg_fieldData
}else{
# field_data_in <- data.frame()
# if no data, return an empty list
warning(paste0(
"WARNING: No field data available for NEON data product ",
neon.data.product.id, " for the dates and sites selected."))
return(list())
}
if("alg_taxonomyProcessed" %in% names(all_tabs_in)){
tax_long_in <- all_tabs_in$alg_taxonomyProcessed
}else{
# tax_long_in <- data.frame()
# if no data, return an empty list
warning(paste0(
"WARNING: No taxon count data available for NEON data product ",
neon.data.product.id, " for the dates and sites selected."))
return(list())
}
if("alg_biomass" %in% names(all_tabs_in)){
# biomass_in <- all_tabs_in$alg_biomass
alg_biomass <- tidyr::as_tibble(all_tabs_in$alg_biomass) %>%
dplyr::mutate(estPerBottleSampleVolume = preservativeVolume + labSampleVolume) %>%
dplyr::filter(analysisType == 'taxonomy')
}else{
# if no data, return an empty list
warning(paste0(
"WARNING: Missing required data for calculating taxon densities for NEON data product ",
neon.data.product.id, " for the dates and sites selected."))
return(list())
}
#Observation table ----
###change NA"s to 0"s in tax_long_in data for calculations only
# tax_long_in$perBottleSampleVolume[is.na(tax_long_in$perBottleSampleVolume)] <- 0
#join algae biomass and taxonomy data
# Note that observational data are in the tax table returned by the lab,
# however, we need "fieldSampleVolume" from the biomass table to standardize
# algal counts returned by the lab. Thus we"re joining tables here by sampleID,
# but only keeping sampleID, parentSampleID, and fieldSampleVolume from the biomass table.
alg_tax_biomass <- alg_biomass %>%
dplyr::select(parentSampleID, sampleID, fieldSampleVolume, estPerBottleSampleVolume) %>%
dplyr::distinct() %>%
dplyr::left_join(tax_long_in,
by = "sampleID",
multiple = "all") %>%
dplyr::mutate(perBottleSampleVolume =
dplyr::case_when(
is.na(perBottleSampleVolume) ~ estPerBottleSampleVolume,
perBottleSampleVolume == 0 ~ estPerBottleSampleVolume,
perBottleSampleVolume > 0 ~ perBottleSampleVolume)) %>%
dplyr::distinct()
# alg_tax_biomass <- biomass_in %>%
# dplyr::select(parentSampleID, sampleID, fieldSampleVolume) %>%
# dplyr::distinct() %>%
# dplyr::left_join(tax_long_in, by = "sampleID") %>%
# dplyr::distinct()
# only keep cols in field_data_in that are unique to that table
field_data_names_to_keep <- c("parentSampleID",
names(field_data_in) %>%
dplyr::setdiff(names(alg_tax_biomass)))
field_data_in <- field_data_in[,field_data_names_to_keep] %>%
dplyr::distinct()
# create the observation table by joining with field_data_in
table_observation_raw <- alg_tax_biomass %>%
dplyr::left_join(field_data_in, by = "parentSampleID") %>%
dplyr::filter(algalParameterUnit=="cellsPerBottle") %>%
dplyr::mutate(
density = dplyr::case_when(
algalSampleType %in% c("seston", "phytoplankton") ~ algalParameterValue / perBottleSampleVolume,
#add phytoplankton back in when applicable
TRUE ~ (algalParameterValue / perBottleSampleVolume) * (fieldSampleVolume / (benthicArea * 10000))),
cell_density_standardized_unit = dplyr::case_when(
algalSampleType %in% c("phytoplankton","seston") ~ "cells/mL",
TRUE ~ "cells/cm2")) %>%
dplyr::filter(
sampleCondition == "Condition OK",
!is.na(density),
density >= 0,
is.finite(density))
# check for dups ----
dup_samples <- table_observation_raw %>%
dplyr::group_by(
sampleID, acceptedTaxonID) %>%
dplyr::summarize(
n_recs = dplyr::n(),
# unique_vals = paste(unique(density), collapse = "|"),
density_aggregate = sum(density)) %>%
dplyr::filter(n_recs > 1)
# filter out duplicates
obs_raw_no_dups <- table_observation_raw %>%
dplyr::anti_join(
dup_samples %>% dplyr::select(sampleID, acceptedTaxonID))
# for dup taxa, use summed densities
obs_raw_summed_dups <- dup_samples %>%
dplyr::select(
sampleID, acceptedTaxonID, density_aggregate) %>%
dplyr::left_join(
table_observation_raw %>%
dplyr::select(-density),
multiple = "first") %>%
dplyr::rename(
density = density_aggregate)
# recombine data
table_observation_raw <- dplyr::bind_rows(
obs_raw_no_dups,
obs_raw_summed_dups)
my_package_id <- paste0(neon_method_id, ".", format(Sys.time(), "%Y%m%d%H%M%S"))
# rename fields for ecocomDP
table_observation_ecocomDP <- table_observation_raw %>%
dplyr::mutate(
package_id = my_package_id) %>%
dplyr::rename(
observation_id = uid,
neon_sample_id = sampleID,
neon_event_id = eventID,
location_id = namedLocation,
datetime = collectDate,
taxon_id = acceptedTaxonID,
value = density,
unit = cell_density_standardized_unit) %>%
dplyr::mutate(
event_id = neon_sample_id,
variable_name = "cell density"
)
# make observation table
table_observation <- table_observation_ecocomDP %>%
dplyr::select(
observation_id,
event_id,
package_id,
location_id,
datetime,
taxon_id,
variable_name,
value,
unit) %>%
dplyr::distinct()
# make observation ancillary table. First convert POSIXct POSIXt classed
# variables to character, otherwise gathering will produce a warning.
table_observation_ancillary <- make_neon_ancillary_observation_table(
obs_wide = table_observation_ecocomDP,
ancillary_var_names = c(
"observation_id",
"neon_sample_id",
"neon_event_id",
"parentSampleID",
"sampleCondition",
"laboratoryName",
"perBottleSampleVolume",
"algalSampleType",
"samplerType",
"habitatType",
"benthicArea",
"samplingProtocolVersion",
"phytoDepth1","phytoDepth2","phytoDepth3",
"substratumSizeClass",
"release",
"publicationDate"))
# location ----
# get relevant location info from the data, use neon helper functions
# to make location and ancillary location tables
table_location_raw <- table_observation_raw %>%
dplyr::select(domainID, siteID, namedLocation,
aquaticSiteType,
decimalLatitude, decimalLongitude, elevation) %>%
dplyr::distinct()
table_location <- make_neon_location_table(
loc_info = table_location_raw,
loc_col_names = c("domainID", "siteID", "namedLocation"))
table_location_ancillary <- make_neon_ancillary_location_table(
loc_info = table_location_raw,
loc_col_names = c("domainID", "siteID", "namedLocation"),
ancillary_var_names = c("namedLocation","aquaticSiteType"))
# # Taxon table using available data
table_taxon <- tax_long_in %>%
# keep only the coluns listed below
dplyr::select(acceptedTaxonID, taxonRank, scientificName,
identificationReferences, laboratoryName) %>%
# if no idenficationReference provided, fill in authority_system with laboratoryName
dplyr::mutate(
identificationReferences = dplyr::case_when(
is.na(identificationReferences) ~ laboratoryName,
TRUE ~ identificationReferences)) %>%
# remove rows with duplicate information
dplyr::distinct() %>%
# rename some columns
dplyr::rename(taxon_id = acceptedTaxonID,
taxon_rank = taxonRank,
taxon_name = scientificName,
authority_system = identificationReferences) %>%
dplyr::select(taxon_id, taxon_rank, taxon_name, authority_system) %>%
# concatenate different references for same taxonID
dplyr::group_by(taxon_id, taxon_rank, taxon_name) %>%
dplyr::summarize(
authority_system = paste(authority_system, collapse = "; ")) %>%
dplyr::filter(taxon_id %in% table_observation$taxon_id)
# make dataset_summary -- required table
years_in_data <- table_observation$datetime %>% lubridate::year()
# years_in_data %>% ordered()
table_dataset_summary <- data.frame(
package_id = table_observation$package_id[1],
original_package_id = neon.data.product.id,
length_of_survey_years = max(years_in_data) - min(years_in_data) + 1,
number_of_years_sampled = years_in_data %>% unique() %>% length(),
std_dev_interval_betw_years = years_in_data %>%
unique() %>% sort() %>% diff() %>% stats::sd(),
max_num_taxa = table_taxon$taxon_id %>% unique() %>% length()
)
# list of tables to be returned, with standardized names for elements
out_list <- list(
location = table_location,
location_ancillary = table_location_ancillary,
taxon = table_taxon,
observation = table_observation,
observation_ancillary = table_observation_ancillary,
dataset_summary = table_dataset_summary)
return(out_list)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.