R/utility.R

Defines functions zeromat nonzeroCoef lamfix lambda.interp err getoutput error.bars getmin

######################################################################
## These functions are minor modifications or directly copied from the 
## glmnet package:
##        Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). 
##        Regularization Paths for Generalized Linear Models via 
##        Coordinate Descent. 
##        Journal of Statistical Software, 33(1), 1-22. 
##        URL http://www.jstatsoft.org/v33/i01/.
## The reason they are copied here is because they are internal functions
## and hence are not exported into the global environment.
## The original comments and header are preserved.


zeromat <- function(nvars, nalam, vnames, stepnames) {
    ca <- rep(0, nalam)
    ia <- seq(nalam + 1)
    ja <- rep(1, nalam)
    dd <- c(nvars, nalam)
    new("dgCMatrix", Dim = dd, Dimnames = list(vnames, stepnames), x = as.vector(ca), 
        p = as.integer(ia - 1), i = as.integer(ja - 1))
}


nonzeroCoef <- function(beta, bystep = FALSE) {
	### bystep = FALSE means which variables were ever nonzero
	### bystep = TRUE means which variables are nonzero for each step
    nr <- nrow(beta)
    if (nr == 1) {
        #degenerate
        #   case
        if (bystep) 
            apply(beta, 2, function(x) if (abs(x) > 0) 
                1 else NULL) else {
            if (any(abs(beta) > 0)) 
                1 else NULL
        }
    } else {
        beta <- abs(beta) > 0  # this is sparse
        which <- seq(nr)
        ones <- rep(1, ncol(beta))
        nz <- as.vector((beta %*% ones) > 0)
        which <- which[nz]
        if (bystep) {
            beta <- as.matrix(beta[which, ])
            nzel <- function(x, which) if (any(x)) 
                which[x] else NULL
            apply(beta, 2, nzel, which)
        } else which
    }
}


lamfix <- function(lam) {
    llam <- log(lam)
    lam[1] <- exp(2 * llam[2] - llam[3])
    lam
}


lambda.interp <- function(lambda, s) {
	### lambda is the index sequence that is produced by the model
	### s is the new vector at which evaluations are required.
	### the value is a vector of left and right indices, and a vector of fractions.
	### the new values are interpolated bewteen the two using the fraction
	### Note: lambda decreases. you take:
	### sfrac*left+(1-sfrac*right)
    
    if (length(lambda) == 1) {
        #
        #   degenerate
        #   case
        #   of
        #   only
        #   one
        #   lambda
        nums <- length(s)
        left <- rep(1, nums)
        right <- left
        sfrac <- rep(1, nums)
    } else {
        s[s > max(lambda)] <- max(lambda)
        s[s < min(lambda)] <- min(lambda)
        k <- length(lambda)
        sfrac <- (lambda[1] - s)/(lambda[1] - lambda[k])
        lambda <- (lambda[1] - lambda)/(lambda[1] - lambda[k])
        coord <- approx(lambda, seq(lambda), sfrac)$y
        left <- floor(coord)
        right <- ceiling(coord)
        sfrac <- (sfrac - lambda[right])/(lambda[left] - lambda[right])
        sfrac[left == right] <- 1
    }
    list(left = left, right = right, frac = sfrac)
}



err <- function(n, maxit, pmax) {
    if (n == 0) 
        msg <- ""
    if (n > 0) {
        #fatal
        #   error
        if (n < 7777) 
            msg <- "Memory allocation error"
        if (n == 7777) 
            msg <- "All used predictors have zero variance"
        if (n == 10000) 
            msg <- "All penalty factors are <= 0"
        n <- 1
        msg <- paste("in cocktail fortran code -", msg)
    }
    if (n < 0) {
        #non
        #   fatal
        #   error
        if (n > -10000) 
            msg <- paste("Convergence for ", -n, "th lambda value not reached after maxit=", 
                maxit, " iterations; solutions for larger lambdas returned", 
                sep = "")
        if (n < -10000) 
            msg <- paste("Number of nonzero coefficients along the path exceeds pmax=", 
                pmax, " at ", -n - 10000, "th lambda value; solutions for larger lambdas returned", 
                sep = "")
        n <- -1
        msg <- paste("from cocktail fortran code -", msg)
    }
    list(n = n, msg = msg)
}



getoutput <- function(fit, maxit, pmax, nvars, vnames) {
    nalam <- fit$nalam
    if (nalam < 1) 
        stop("an empty model has been returned; something is wrong")
    nbeta <- fit$nbeta[seq(nalam)]
    nbetamax <- max(nbeta)
    lam <- fit$alam[seq(nalam)]
    
    stepnames <- paste("s", seq(nalam) - 1, sep = "")
    dd <- c(nvars, nalam)
    if (nbetamax > 0) {
        beta <- matrix(fit$beta[seq(pmax * nalam)], pmax, nalam)[seq(nbetamax), 
            , drop = FALSE]
        df <- apply(abs(beta) > 0, 2, sum)
        ja <- fit$ibeta[seq(nbetamax)]
        oja <- order(ja)
        ja <- rep(ja[oja], nalam)
        ibeta <- cumsum(c(1, rep(nbetamax, nalam)))
        beta <- new("dgCMatrix", Dim = dd, Dimnames = list(vnames, stepnames), 
            x = as.vector(beta[oja, ]), p = as.integer(ibeta - 1), i = as.integer(ja - 
                1))
    } else {
        beta <- zeromat(nvars, nalam, vnames, stepnames)
        df <- rep(0, nalam)
    }
    list(beta = beta, df = df, dim = dd, lambda = lam)
} 


error.bars <- function(x, upper, lower, width = 0.02, ...)
{
	xlim <- range(x)
	barw <- diff(xlim) * width
	segments(x, upper, x, lower, ...)
	segments(x - barw, upper, x + barw, upper, ...)
	segments(x - barw, lower, x + barw, lower, ...)
	range(upper, lower)
}

getmin <- function(lambda, cvm, cvsd) {
    cvmin <- min(cvm)
    idmin <- cvm <= cvmin
    lambda.min <- max(lambda[idmin])
    idmin <- match(lambda.min, lambda)
    semin <- (cvm + cvsd)[idmin]
    idmin <- cvm <= semin
    lambda.1se <- max(lambda[idmin])
    list(lambda.min = lambda.min, lambda.1se = lambda.1se)
}

Try the fastcox package in your browser

Any scripts or data that you put into this service are public.

fastcox documentation built on May 2, 2019, 10:25 a.m.