Nothing
isotone <- function(y) {
# Compute an isotonic regression line from data in Y
# This is the piecewise linear line that is monotonic and
# most closely approximates Y in the least squares sense.
n <- length(y)
mony <- y
eb <- 0
indx <- 1:(n-1)
while (eb < n) {
negind <- (diff(mony) < 0)
ib <- min(indx[diff(mony) < 0])
if (is.na(ib)) {
bb <- eb <- n
} else {
bb <- eb <- ib
}
while (eb < n && mony[bb] == mony[eb+1]) eb <- eb + 1
poolflg <- -1
while (poolflg != 0) {
if (eb >= n || mony[eb] <= mony[eb+1]) poolflg <- 1
if (poolflg == -1) {
br <- er <- eb+1
while (er < n && mony[er+1] == mony[br]) er <- er + 1
pmn <- (mony[bb]*(eb-bb+1) + mony[br]*(er-br+1))/(er-bb+1)
eb <- er
mony[bb:eb] <- pmn
poolflg <- 1
}
if (poolflg == 1) {
if (bb <= 1 || mony[bb-1] <= mony[bb]) {
poolflg <- 0
} else {
bl <- el <- bb-1
while (bl > 1 && mony[bl-1] == mony[el]) bl <- bl - 1
pmn <- (mony[bb]*(eb-bb+1) + mony[bl]*(el-bl+1))/(eb-bl+1)
bb <- bl
mony[bb:eb] <- pmn
poolflg <- -1
}
}
}
}
return(mony)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.