Nothing
print.FASSMR.kernel<-function(x,...){
cat("*** MFPLSIM fitted using FASSMR combined with kernel estimation with Nadaraya-Watson weights ***\n")
cat("\n-Call: ")
print(x$call)
cat("\n-Bandwidth (h): ")
cat(x$h.opt)
cat("\n-wn: ")
cat(x$w.opt)
cat("\n-Theta coefficients in the B-spline basis: ")
cat(x$theta.est)
cat("\n-Linear coefficients (beta): \n")
cat(x$beta.est)
cat("\n-Number of non-zero beta-coefficients: ")
cat(length(x$indexes.beta.nonnull))
cat("\n-Indexes non-zero linear coefficients: ")
cat(x$indexes.beta.nonnull)
cat("\n-Lambda: ")
cat(x$lambda.opt)
cat("\n-IC: ")
cat(x$IC)
cat("\n-Penalty: ")
cat(x$penalty)
cat("\n-Criterion: ")
cat(x$criterion)
cat("\n")
}
summary.FASSMR.kernel<-function(object,...){
cat("*** MFPLSIM fitted using FASSMR combined with kernel estimation with Nadaraya-Watson weights ***\n")
cat("\n-Call: ")
print(object$call)
cat("\n-Bandwidth (h): ")
cat(object$h.opt)
cat("\n-wn: ")
cat(object$w.opt)
cat("\n-Theta coefficients in the B-spline basis: ")
cat(object$theta.est)
cat("\n-Linear coefficients (beta): \n")
cat(object$beta.est)
cat("\n-Number of non-zero linear coefficients: ")
cat(length(object$indexes.beta.nonnull))
cat("\n-Indexes of non-zero beta-coefficients: ")
cat(object$indexes.beta.nonnull)
cat("\n-Lambda: ")
cat(object$lambda.opt)
cat("\n-IC: ")
cat(object$IC)
cat("\n-Penalty: ")
cat(object$penalty)
cat("\n-Criterion: ")
cat(object$criterion)
cat("\n")
}
predict.FASSMR.kernel<- function(object,newdata.x=NULL,newdata.z=NULL,y.test=NULL,option=NULL, ...)
{
if(is.null(newdata.x)|is.null(newdata.z)){
y <- fitted(object)
out<-y
}
else{
if(is.null(option)) option<-1
x.test <- newdata.x
z.test<- newdata.z
pred.LR.n <- as.matrix(z.test)%*%object$beta.est
y.new<-object$y - as.matrix(object$z)%*%object$beta.est
if (option==1) {
pred.FSIM.n <- fsim.kernel.test(y=y.new,x=object$x, x.test=x.test,y.test=y.test, theta=object$theta.est, h=object$h.opt,
kind.of.kernel=object$kind.of.kernel, range.grid=object$range.grid, order.Bspline=object$order.Bspline,
nknot=object$nknot, nknot.theta=object$nknot.theta)
pred.n <- pred.LR.n + pred.FSIM.n$y.estimated.test
y1<-pred.n
if(is.null(y.test)){
MSEP.1<-NULL
out<-y1
}
else{
MSEP.1 <- mean((y1 - y.test)^2)
out<-list(y=y1,MSEP.1=MSEP.1)
}
}
if (option==2) {
aux2 <-fsim.kernel.fit.fixedtheta(y=y.new,x=object$x, norm.diff=object$norm.diff,min.quantile.h=object$min.quantile.h,max.quantile.h=object$max.quantile.h,h.seq=object$h.seq,num.h=object$num.h,kind.of.kernel=object$kind.of.kernel)
h.opt.2 <- aux2$h.opt
pred.FSIM.n.2 <- fsim.kernel.test(y=y.new,x=object$x, x.test=x.test, y.test=y.test, theta=object$theta.est, h=h.opt.2, kind.of.kernel=object$kind.of.kernel, range.grid=object$range.grid,
order.Bspline=object$order.Bspline,nknot=object$nknot, nknot.theta=object$nknot.theta)
pred.n.2 <- pred.LR.n + pred.FSIM.n.2$y.estimated.test
y2<-pred.n.2
if(is.null(y.test)){
MSEP.2<-NULL
out<-y2
}
else{
MSEP.2 <-mean((y2 - y.test)^2)
out<-list(y=y2,MSEP.2=MSEP.2)
}
}
}
out
}
plot.FASSMR.kernel<-function(x,ind=1:10,size=15,col1=1,col2=2,col3=4,option=0,...)
{
a<-x$range.grid[1]
b<-x$range.grid[2]
long_data <- as.data.frame(t(x$z[ind, ]))
Wavelength = seq(a, b, length.out = nrow(long_data))
long_data <- cbind(Wavelength, long_data)
long_data <- gather(long_data, key = "Series", value = "Value", -Wavelength)
matplot_colors <- 1:10
impact_points <- Wavelength[x$indexes.beta.nonnull]
g1=ggplot(long_data, aes(x = Wavelength, y = Value, group = Series, color = Series)) +
geom_line(linewidth = 1) +
scale_color_manual(values = rep(matplot_colors, length.out = length(unique(long_data$Series)))) +
geom_vline(xintercept = impact_points, color = 1, linetype = "dashed",size=1) +
theme_bw() +
labs(x = "t", y = "", title = expression(paste(zeta[i],"(t)"))) +
theme(plot.title = element_text(hjust = 0.5,size=size),axis.title.x=element_text(size=size),legend.position = "none")
THETA<-x$theta.est
nknot.theta<-x$nknot.theta
order.Bspline<-x$order.Bspline
x.t <- seq(a, b, length=ncol(x$x))
Knot.theta<-seq(a, b, length = nknot.theta + 2)[ - c(1, nknot.theta + 2)]
delta.theta<-sort(c(rep(c(a, b),order.Bspline), Knot.theta))
Bspline.theta<-splineDesign(delta.theta,x.t,order.Bspline)
theta.rec<-Bspline.theta%*%THETA
theta_df <- data.frame(x.t, theta.rec)
# First Plot using ggplot2
g2<-ggplot(theta_df, aes(x = x.t, y = theta.rec)) +
geom_line(linewidth = 1.5, color = col1) +
labs(x = "range.grid X", y = "", title = expression(widehat(theta)[0])) +
theme_bw()+
theme(plot.title = element_text(hjust = 0.5,size=size),axis.title.x=element_text(size=size))
fit<-fitted(x)
mod <- lm(x$y ~ fit)
res <- residuals(mod)
y<-x$y
x_df <- data.frame(fit, y)
g3<-ggplot(x_df, aes(x = fit, y = y)) +
geom_point(colour = col1,shape=1, size=5) +
geom_smooth(method=lm,formula=y~x,colour =col2, linewidth = 1.5) +
labs(x = "Fitted values", y = "y", title = "Response vs Fitted values") +
theme_bw()+
theme(plot.title = element_text(hjust = 0.5,size=size),axis.title.x=element_text(size=size))
x_df2 <- data.frame(fit, res)
g4<-ggplot(x_df2, aes(x = fit, y = res)) +
geom_point(colour = col1,shape=1,size=5) +
geom_hline(yintercept = 0, linetype = "dashed", colour = 1, linewidth = 1) +
geom_smooth(method=loess,formula=y~x,linewidth=1.5,col=col3)+
labs(x = "Fitted Values", y = "Residuals", title = "Residuals vs Fitted Values") +
theme_bw()+
theme(plot.title = element_text(hjust = 0.5,size=size),axis.title.x=element_text(size=size))
if(option==0){
grid.arrange(g1,g2,g3,g4,ncol =2,nrow=2)}
if(option==1){
grid.arrange(g1,ncol=1)}
if(option==2){
grid.arrange(g2,ncol=1)}
if(option==3){
grid.arrange(g3,g4,ncol=2)}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.