R/simulation.R

Defines functions simMultiWeight simMultiSplit simMultiFunData simFunData eVal eFun efWiener efFourier efPoly

Documented in efFourier efPoly eFun efWiener eVal simFunData simMultiFunData simMultiSplit simMultiWeight

#### sparsify ####

#' Generate a sparse version of functional data objects
#'
#' This function generates an artificially sparsified version of a functional
#' data object of class \code{\linkS4class{funData}} (univariate) or
#' \code{\linkS4class{multiFunData}} (multivariate). The minimal and maximal number
#' of observation points for all observations can be supplied by the user.
#'
#' The technique for artificially sparsifying the data is as described in Yao et
#' al. (2005): For each element \eqn{x_i^{(j)}}{x_i^(j)} of an observed
#' (multivariate) functional data object \eqn{x_i}, a random number
#' \eqn{R_i^{(j)} \in \{\mathrm{minObs}, \ldots, \mathrm{maxObs}\}}{R_i^(j)
#' in {\code{minObs}, \ldots, \code{maxObs}}} of observation points is generated. The points
#' are sampled uniformly from the full grid \eqn{\{t_{j,1} , \ldots , t_{j,
#' S_j}\} \subset \mathcal{T}_j}{{t_{j,1} , \ldots , t_{j, S_j}} in T_j}, resulting in
#' observations \deqn{ x_{i,r}^{(j)} = x_i^{(j)}(t_{j,r}), \quad r = 1
#' ,\ldots,R_i^{(j)},~ j = 1, \ldots, p.}{ x_{i,r}^(j) = x_i^(j)(t_{j,r}), r = 1
#' ,\ldots,R_i^(j), j = 1, \ldots, p.}
#' 
#' @section Warning:
#' This function is currently implemented for 1D data only.
#'
#' @param funDataObject A functional data object of class
#'   \code{\linkS4class{funData}} or \code{\linkS4class{multiFunData}}.
#' @param minObs,maxObs The minimal/maximal number of observation points. Must be a scalar for
#'   univariate functional data (\code{\linkS4class{funData}} class) or a
#'   vector of the same length as \code{funDataObject} for multivariate
#'   functional data (\code{\linkS4class{multiFunData}} class), giving the
#'   minimal/maximal number of observations for each element. See Details.
#'
#' @return An object of the same class as \code{funDataObject}, which is a
#'   sparse version of the original data.
#'
#' @seealso \code{\linkS4class{funData}}, \code{\linkS4class{multiFunData}},
#'   \code{\link{simFunData}}, \code{\link{simMultiFunData}},
#'   \code{\link{addError}}.
#'
#' @references Yao, F., H.-G. Mueller and J.-L. Wang (2005): Functional Data
#'   Analysis for Sparse Longitudinal Data. Journal of the American Statistical
#'   Association, 100 (470), 577--590.
#'
#' @export sparsify
#'
#' @examples
#' oldPar <- par(no.readonly = TRUE)
#' par(mfrow = c(1,1))
#' set.seed(1)
#'
#' # univariate functional data
#' full <- simFunData(argvals = seq(0,1, 0.01), M = 10, eFunType = "Fourier",
#'                    eValType = "linear", N = 3)$simData
#' sparse <- sparsify(full, minObs = 4, maxObs = 10)
#'
#' plot(full, main = "Sparsify")
#' plot(sparse, type = "p", pch = 20, add = TRUE)
#' legend("topright", c("Full", "Sparse"), lty = c(1, NA), pch = c(NA, 20))
#'
#' # Multivariate
#' full <- simMultiFunData(type = "split", argvals = list(seq(0,1, 0.01), seq(-.5,.5, 0.02)),
#'                         M = 10, eFunType = "Fourier", eValType = "linear", N = 3)$simData
#' sparse <- sparsify(full, minObs = c(4, 30), maxObs = c(10, 40))
#'
#' par(mfrow = c(1,2))
#' plot(full[[1]], main = "Sparsify (multivariate)", sub = "minObs = 4, maxObs = 10")
#' plot(sparse[[1]], type = "p", pch = 20, add = TRUE)
#'
#' plot(full[[2]], main = "Sparsify (multivariate)", sub = "minObs = 30, maxObs = 40")
#' plot(sparse[[2]], type = "p", pch = 20, add = TRUE)
#' legend("bottomright", c("Full", "Sparse"), lty = c(1, NA), pch = c(NA, 20))
#'
#' par(oldPar)
setGeneric("sparsify", function(funDataObject, minObs, maxObs) {standardGeneric("sparsify")})


#' sparsify for univariate functional data
#'
#' @keywords internal
setMethod("sparsify", signature = "funData",
          function(funDataObject, minObs, maxObs){
            
            if(! all(is.numeric(minObs), length(minObs) == 1))
              stop("Parameter 'minObs' must be passed as a number.") 
            
            if(! all(is.numeric(maxObs), length(maxObs) == 1))
              stop("Parameter 'maxObs' must be passed as a number.") 
            
            if(maxObs > nObsPoints(funDataObject))
              stop("'maxObs' must not exceed the maximal number of observations")

            if(minObs < 1)
              stop("'minObs' must be a positive integer!")
            
            if(maxObs < minObs)
              stop("'minObs' must be smaller or equal to 'maxObs'.")
            
            sparseData <- funDataObject

            for(i in 1:nObs(sparseData)) # for all observed functions
            {
              if(minObs == maxObs)
                Ni <- minObs
              else
                Ni <- sample(minObs:maxObs, 1) # number of observation points
              
              notNA <- sample(nObsPoints(funDataObject), Ni) # sample observation points
              sparseData@X[i, -notNA] <- NA  # set all other values to NA
            }
            return(sparseData)})


#' sparsify for multivariate functional data
#'
#' @keywords internal
setMethod("sparsify", signature = "multiFunData",
          function(funDataObject, minObs, maxObs){
            return(multiFunData(mapply(function(dat, minObs, maxObs){sparsify(dat, minObs, maxObs)}, funDataObject, minObs, maxObs)))
          })


#' Add Gaussian white noise to functional data objects
#' 
#' This function generates an artificial noisy version of a functional data 
#' object of class \code{\linkS4class{funData}} (univariate) or 
#' \code{\linkS4class{multiFunData}} (multivariate) by adding iid. realizations
#' of Gaussian random variables \eqn{\varepsilon \sim \mathcal{N}(0,
#' \sigma^2)}{\eps ~ N(0, \sigma^2)} to the observations. The standard deviation
#' \eqn{\sigma} can be supplied by the user.
#' 
#' @param funDataObject A functional data object of class 
#'   \code{\linkS4class{funData}} or \code{\linkS4class{multiFunData}}.
#' @param sd The standard deviation \eqn{\sigma} of the Gaussian white noise 
#'   that is added to the data. Defaults to \code{1}. See Description.
#'   
#' @return An object of the same class as \code{funDataObject}, which is a noisy
#'   version of the original data.
#'   
#' @seealso \code{\linkS4class{funData}}, \code{\linkS4class{multiFunData}},
#'   \code{\link{simFunData}}, \code{\link{simMultiFunData}}.
#'   
#' @export addError
#'   
#' @examples
#' oldPar <- par(no.readonly = TRUE)
#' set.seed(1)
#' 
#' # Univariate functional data
#' plain <- simFunData(argvals = seq(0,1,0.01), M = 10, eFunType = "Fourier",
#'                     eValType = "linear", N = 1)$simData
#' noisy <- addError(plain , sd = 0.5)
#' veryNoisy <- addError(plain, sd = 2)
#' 
#' plot(plain, main = "Add error", ylim = range([email protected]@X))
#' plot(noisy, type = "p", pch = 20, add = TRUE)
#' plot(veryNoisy, type = "p", pch = 4, add = TRUE)
#' legend("topright", c("Plain", "Noisy", "Very Noisy"), lty = c(1, NA, NA), pch = c(NA, 20 ,4))
#' 
#' # Multivariate functional data
#' plain <- simMultiFunData(type = "split", argvals = list(seq(0,1,0.01), seq(-.5,.5,0.02)), M = 10,
#'                         eFunType = "Fourier", eValType = "linear", N = 1)$simData
#' noisy <- addError(plain , sd = 0.5)
#' veryNoisy <- addError(plain, sd = 2)
#' 
#' par(mfrow = c(1,2))
#' plot(plain[[1]], main = "Add error (multivariate)", ylim = range(veryNoisy[[1]]@@X))
#' plot(noisy[[1]], type = "p", pch = 20, add = TRUE)
#' plot(veryNoisy[[1]], type = "p", pch = 4, add = TRUE)
#' 
#' plot(plain[[2]], main = "Add error (multivariate)", ylim = range(veryNoisy[[2]]@@X))
#' plot(noisy[[2]], type = "p", pch = 20, add = TRUE)
#' plot(veryNoisy[[2]], type = "p", pch = 4, add = TRUE)
#' legend("topright", c("Plain", "Noisy", "Very Noisy"), lty = c(1, NA, NA), pch = c(NA, 20 ,4))
#' 
#' par(oldPar)
setGeneric("addError", function(funDataObject, sd) {standardGeneric("addError")})


#'  Add gaussian white noise to functional data
#'
#' @importFrom stats rnorm
#'
#' @keywords internal
setMethod("addError", signature = "funData",
          function(funDataObject, sd){
            if(! all(is.numeric(sd), length(sd) == 1, sd > 0))
              stop("Parameter 'sd' must be passed as a positive number.") 
            
            ME <- array(stats::rnorm(prod(dim(funDataObject@X)), mean = 0, sd = sd),  dim(funDataObject@X))
            
            return(funDataObject + funData(funDataObject@argvals, ME))
          })

#' Add gaussian white noise to multivariate functional data
#'
#' @keywords internal
setMethod("addError", signature = "multiFunData",
          function(funDataObject, sd){
            return(multiFunData(mapply(function(dat, sd){addError(dat, sd)}, funDataObject, sd)))
          })


#' Legendre Polynomials of degree 0,...,M-1
#'
#' This function iteratively calculates orthonormal Legendre polynomials of
#' degree 0,...,M-1 on an arbitrary interval.
#'
#' @param argvals A vector, defining a (fine) grid on the interval for which the
#'   Legendre polynomials are computed.
#' @param M An integer, specifying the number (and hence the degree) of
#'   polynomials that are calculated.
#'
#' @return A univariate functional data object of class \code{\linkS4class{funData}}
#'   containing the Legendre polynomials on the given interval.
#'
#' @seealso \code{\linkS4class{funData}}, \code{\link{simFunData}}, \code{\link{simMultiFunData}}
#'
#' @keywords internal
efPoly <- function(argvals, M)
{
  Phi <- matrix(NA, ncol = length(argvals), nrow = M)
  
  Phi[1, ] <- 1
  if(M == 1)
    return(funData(argvals, Phi))
  
  Phi[2, ] <- (2 * (argvals - min(argvals)) / diff(range(argvals)) - 1)
  
  if(M > 2)
  {
    for(m in 3:M) # for each function
      Phi[m, ] <- (2*m-3) / (m-1) * (2 * (argvals - min(argvals)) / diff(range(argvals)) - 1) * Phi[m-1, ]- (m-2) / (m-1) * Phi[m-2, ]
  }
  
  for(m in 1:M) # normalize
    Phi[m, ] <- sqrt((2*m-1) / diff(range(argvals))) * Phi[m, ]
  
  return(funData(argvals, Phi))
}


#' Calculate the first M Fourier basis functions
#'
#' This function calculates the first M orthonormal Fourier basis functions on
#' an arbitrary interval.
#'
#' If \code{linear}, the last basis function does not belong to the  Fourier
#' basis, but is the linear function orthogonalized to all previous Fourier
#' basis functions via the Gram-Schmidt method. This is implemented only if
#' \code{argvalss} is a grid defining the unit interval \eqn{[0,1]}.
#'
#' @param argvals A vector, defining a (fine) grid on the interval for which the
#'   Fourier basis functions are computed.
#' @param M An integer, specifying the number of basis functions that are
#'   calculated.
#' @param linear Logical. If \code{TRUE}, the last function is not a Fourier
#'   function but the linear function orthogonalized to all previous Fourier
#'   basis functions. Defaults to \code{FALSE}. See Details.
#'
#' @return A univariate functional data object of class
#'   \code{\linkS4class{funData}} containing the Fourier basis functions on
#'   the given interval.
#'
#' @seealso \code{\linkS4class{funData}}, \code{\link{simFunData}}, \code{\link{simMultiFunData}}
#'
#' @keywords internal
efFourier <- function(argvals, M, linear = FALSE)
{
  Phi <- matrix(NA, nrow = M, ncol = length(argvals))
  
  Phi[1,] <- sqrt(1 / diff(range(argvals)))
  
  if(M == 1)
    return(funData(argvals, Phi))
  
  for(m in 2:M)
  {
    if(m %% 2 == 0) # m even
      Phi[m, ] <- sqrt(2 / diff(range(argvals))) * cos((m %/% 2) * (2*pi * (argvals - min(argvals)) / diff(range(argvals)) - pi))
    else # m odd
      Phi[m, ] <- sqrt(2 / diff(range(argvals))) * sin((m %/% 2) * (2*pi * (argvals - min(argvals)) / diff(range(argvals)) - pi))
  }
  
  if(linear) # overwrite Phi[M, ], add linear function and orthonormalize (Gram-Schmidt)
  {
    if(any(range(argvals) != c(0,1)))
      stop("efFourier, option linear: not yet implemented for argvals != [0,1]!")
    
    # orthogonalize (exact function)
    Phi[M, ] <- argvals - 1/2  + rowSums(apply(matrix(1:((M-1) %/% 2)), 1, function(k) (-1)^k / (pi*k) * sin(k * (2*pi*argvals - pi))))
    # normalize
    Phi[M, ] <-  Phi[M, ] / sqrt(1/3 - 1/4 - 1 / (2*pi^2)* sum( 1 / (1:((M-1) %/% 2 ))^2 ))
  }
  
  return(funData(argvals, Phi))
}


#' Calculate the first M eigenfunctions of the Wiener process
#'
#' This function calculates the first M (orthonormal) eigenfunctions of the
#' Wiener process on an arbitrary interval.
#'
#' @param argvals A vector, defining a (fine) grid on the interval for which the
#'   eigenfunctions are computed.
#' @param M An integer, specifying the number of eigenfunctions that are
#'   calculated.
#'
#' @return A univariate functional data object of class
#'   \code{\linkS4class{funData}} containing the eigenfunctions of the Wiener
#'   process on the given interval.
#'
#' @seealso \code{\linkS4class{funData}}, \code{\link{simFunData}}, \code{\link{simMultiFunData}}
#'
#' @keywords internal
efWiener <- function(argvals, M)
{
  Phi <- sapply(1:M, function(m,t){sqrt(2 / diff(range(t))) * sin( (pi/2) * (2*m - 1) * (t - min(t)) / diff(range(t)))}, t = argvals)
  
  return(funData(argvals, t(Phi)))
}


#' Generate orthonormal eigenfunctions
#' 
#' This function calculates \eqn{M} (orthonormal) basis functions on a given 
#' interval, that can be interpreted as the first \eqn{M} eigenfunctions of an 
#' appropriate data generating process of functional data.
#' 
#' The function implements three families of orthonormal basis functions plus 
#' variations of them. The parameter \code{type}, that specifies the functions 
#' to be calculated, can have the following values: \itemize{\item
#' \code{"Poly"}: Calculate orthonormal Legendre polynomials of degree
#' 0,...,M-1. \item \code{"PolyHigh"}: Calculate \eqn{M} orthonormal Legendre
#' Polynomials of higher degree. The vector of indices \code{ignoreDeg}
#' specifies the functions to be ignored. If \code{ignoreDeg} is not specified,
#' the function returns an error. \item \code{"Fourier"}: Calculate the first
#' \eqn{M} Fourier basis functions. \item \code{"FourierLin"}: Calculate the
#' first \eqn{M-1} Fourier basis functions plus the linear function,
#' orthonormalized to the previous functions via Gram-Schmidts method. This type
#' is currently implemented for functions on the unit interval \eqn{[0,1]} only.
#' If the function is called with other \code{argvals}, an error is thrown.
#' \item \code{"Wiener"}: Calculate the first \eqn{M} orthonormal eigenfunctions
#' of the Wiener process. }
#' 
#' @param argvals A vector of numerics, defining a (fine) grid on the interval
#'   for which the basis functions are computed.
#' @param M An integer, specifying the number of functions that are calculated.
#' @param ignoreDeg A vector of numerics, specifying the degrees to be ignored 
#'   for type \code{"PolyHigh"}. Defaults to \code{NULL}. See Details.
#' @param type A character string, specifying the type of functions that are
#'   calculated. See Details.
#'   
#' @return A univariate functional data object of class 
#'   \code{\linkS4class{funData}} containing the basis functions on the given 
#'   interval.
#'   
#' @seealso \code{\linkS4class{funData}}, \code{\link{simFunData}},
#'   \code{\link{simMultiFunData}}
#'   
#' @export eFun
#'    
#' @examples
#' oldPar <- par(no.readonly = TRUE)
#' 
#' argvals <- seq(0,1,0.01)
#' 
#' par(mfrow = c(3,2))
#' plot(eFun(argvals, M = 4, type = "Poly"), main = "Poly", ylim = c(-3,3))
#' plot(eFun(argvals, M = 4, ignoreDeg = 1:2, type = "PolyHigh"), main = "PolyHigh",  ylim = c(-3,3))
#' plot(eFun(argvals, M = 4, type = "Fourier"), main = "Fourier", ylim = c(-3,3))
#' plot(eFun(argvals, M = 4, type = "FourierLin"), main = "FourierLin", ylim = c(-3,3))
#' plot(eFun(argvals, M = 4, type = "Wiener"), main = "Wiener",  ylim = c(-3,3))
#' par(oldPar)
eFun <- function(argvals, M, ignoreDeg = NULL, type)
{
  if(! all(is.numeric(argvals), length(argvals) > 0))
    stop("Parameter 'argvals' must be numeric.")
  
  if(! all(is.numeric(M), length(M) == 1, M > 0))
    stop("Parameter 'M' must be passed as a positive number.") 
  
  if(!(is.null(ignoreDeg ) | all(is.numeric(ignoreDeg), ignoreDeg > 0)))
    stop("Parameter 'ignoreDeg' must be either NULL or a vector of positive numbers.") 
  
  if(! all(is.character(type), length(type) == 1))
     stop("Parameter 'type' must be passed as a string.")
  
  
  
  ret <- switch(type,
                Poly = efPoly(argvals, M),
                PolyHigh = {
                  if(is.null(ignoreDeg ))
                    stop("eFun, type = PolyHigh: specify ignoreDeg !")
                  
                  extractObs(efPoly(argvals, M + length(ignoreDeg)), obs = -ignoreDeg)
                },
                Fourier = efFourier(argvals, M, linear = FALSE),
                FourierLin = efFourier(argvals, M, linear = TRUE),
                Wiener = efWiener(argvals, M),
                stop("Choose either Poly, PolyHigh, Fourier, FourierLin or Wiener"))
  return(ret)
}


#' Generate a sequence of simulated eigenvalues
#' 
#' This function generates \eqn{M} decreasing eigenvalues.
#' 
#' The function implements three types of eigenvalues: \itemize{\item 
#' \code{"linear":} The eigenvalues start at  \eqn{1} and decrease linearly 
#' towards \eqn{0}: \deqn{\nu_m = \frac{M+1-m}{m}.}{\nu_m = (M+1-m)/m.} \item
#' \code{"exponential":} The eigenvalues start at \eqn{1}  and decrease
#' exponentially towards \eqn{0}: \deqn{\nu_m =
#' \exp\left(-\frac{m-1}{2}\right).}{\nu_m = exp(-(m-1)/2).}\item
#' \code{"wiener":} The eigenvalues correspond to the eigenvalues of the Wiener
#' process: \deqn{\nu_m = \frac{1}{(\pi/2 \cdot (2m-1))^2}.}{\nu_m = (pi/2 *
#' (2m-1))^(-2)} }
#' 
#' @param M An integer, the number of eigenvalues to be generated.
#' @param type A character string specifying the type of eigenvalues that should
#'   be calculated. See Details.
#'   
#' @return A vector containing the \code{M} decreasing eigenvalues.
#'   
#' @importFrom graphics points
#' 
#' @export eVal
#'   
#' @examples
#' oldpar <- par(no.readonly = TRUE)
#' 
#' # simulate M = 10 eigenvalues
#' M <- 10
#' eLin <- eVal(M = M, type = "linear")
#' eExp <- eVal(M = M, type = "exponential")
#' eWien <- eVal(M = M, type = "wiener")
#' 
#' par(mfrow = c(1,1))
#' plot(1:M, eLin, pch = 20, xlab = "m", ylab = expression(nu[m]), ylim = c(0,1))
#' points(1:M, eExp, pch = 20, col = 3)
#' points(1:M, eWien, pch = 20, col = 4)
#' legend("topright", legend = c("linear", "exponential", "wiener"), pch = 20, col = c(1,3,4))
#' 
#' par(oldpar)
eVal <- function(M, type)
{
  if(! all(is.numeric(M), length(M) == 1, M > 0))
    stop("Parameter 'M' must be passed as a positive number.") 
  
  if(! all(is.character(type), length(type) == 1))
    stop("Parameter 'type' must be passed as a string.")
  
  ret <- switch(type,
                linear = ((M+1) - (1:M)) / M,
                exponential = exp(-(0:(M-1)) / 2),
                wiener = 1/(pi/2 * (2 * (1:M) - 1))^2,
                stop("Choose either linear, exponential or wiener"))
  return(ret)
}


#' Simulate univariate functional data
#' 
#' This functions simulates (univariate) functional data \eqn{f_1,\ldots, f_N} based on a truncated 
#' Karhunen-Loeve representation: \deqn{f_i(t) = \sum_{m = 1}^M \xi_{i,m} \phi_m(t).} on one- or
#' higher-dimensional domains. The eigenfunctions (basis functions) \eqn{\phi_m(t)} are generated 
#' using \code{\link{eFun}}, the scores \eqn{\xi_{i,m}} are simulated independently from a normal
#' distribution with zero mean and decreasing variance based on the \code{\link{eVal}} function. For
#' higher-dimensional domains, the eigenfunctions are constructed as tensors of marginal orthonormal
#' function systems.
#' 
#' @param argvals A numeric vector, containing the observation points (a fine grid on a real
#'   interval) of the functional data that is to be simulated or a list of the marginal observation points.
#' @param M An integer, giving the number of univariate basis functions to use. For higher-dimensional data, \code{M} is a vector with the marginal number of eigenfunctions. See Details.
#' @param eFunType A character string specifying the type of univariate orthonormal basis functions
#'   to use. For data on higher-dimensional domains, \code{eFunType} can be a vector, specifying the marginal type of eigenfunctions to use in the tensor product. See \code{\link{eFun}} for details.
#' @param ignoreDeg A vector of integers, specifying the degrees to ignore when generating the
#'   univariate orthonormal bases. Defaults to \code{NULL}. For higher-dimensional data, \code{ignoreDeg} can be supplied as list with vectors for each marginal. See \code{\link{eFun}} for details.
#' @param eValType A character string, specifying the type of eigenvalues/variances used for the
#'   generation of the simulated functions based on the truncated Karhunen-Loeve representation. See
#'   \code{\link{eVal}} for details.
#' @param N An integer, specifying the number of multivariate functions to be generated.
#'   
#' @return \item{simData}{A \code{\linkS4class{funData}} object with \code{N} observations,
#'   representing the simulated functional data.} \item{trueFuns}{A \code{\linkS4class{funData}}
#'   object with \code{M} observations, representing the true eigenfunction basis used for
#'   simulating the data.} \item{trueVals}{A vector of numerics, representing the true eigenvalues
#'   used for simulating the data.}
#'   
#' @seealso \code{\linkS4class{funData}}, \code{\link{eFun}}, \code{\link{eVal}}, 
#'   \code{\link{addError}}, \code{\link{sparsify}}
#'   
#' @importFrom stats rnorm
#'   
#' @export simFunData
#'   
#' @examples
#' oldPar <- par(no.readonly = TRUE)
#' 
#' # Use Legendre polynomials as eigenfunctions and a linear eigenvalue decrease
#' test <- simFunData(seq(0,1,0.01), M = 10, eFunType = "Poly", eValType = "linear", N = 10)
#' 
#' plot(test$trueFuns, main = "True Eigenfunctions")
#' plot(test$simData, main = "Simulated Data")
#' 
#' # The use of ignoreDeg for eFunType = "PolyHigh"
#' test <- simFunData(seq(0,1,0.01), M = 4, eFunType = "Poly", eValType = "linear", N = 10)
#' test_noConst <-  simFunData(seq(0,1,0.01), M = 4, eFunType = "PolyHigh",
#'                             ignoreDeg = 1, eValType = "linear", N = 10)
#' test_noLinear <-  simFunData(seq(0,1,0.01), M = 4, eFunType = "PolyHigh",
#'                              ignoreDeg = 2, eValType = "linear", N = 10)
#' test_noBoth <-  simFunData(seq(0,1,0.01), M = 4, eFunType = "PolyHigh",
#'                            ignoreDeg = 1:2, eValType = "linear", N = 10)
#' 
#' par(mfrow = c(2,2))
#' plot(test$trueFuns, main = "Standard polynomial basis (M = 4)")
#' plot(test_noConst$trueFuns, main = "No constant basis function")
#' plot(test_noLinear$trueFuns, main = "No linear basis function")
#' plot(test_noBoth$trueFuns, main = "Neither linear nor constant basis function")
#' 
#' # Higher-dimensional domains
#' simImages <- simFunData(argvals = list(seq(0,1,0.01), seq(-pi/2, pi/2, 0.02)), 
#'              M = c(5,4), eFunType = c("Wiener","Fourier"), eValType = "linear", N = 4)
#' for(i in 1:4) 
#'    plot(simImages$simData, obs = i, main = paste("Observation", i))
#'                
#' par(oldPar)
simFunData <- function(argvals, M, eFunType, ignoreDeg = NULL, eValType, N)
{
  ### check type of input parameters
  if(! is.numeric(M))
    stop("Parameter 'M' must be numeric.") 
  
  if(! is.character(eFunType))
    stop("Parameter 'eFunType' must be passed as a string.")
  
  if(!(is.null(ignoreDeg ) | all(is.numeric(ignoreDeg), ignoreDeg > 0)))
    stop("Parameter 'ignoreDeg' must be either NULL or a vector of positive numbers.") 
  
  if(! all(is.character(eValType), length(eValType) == 1))
    stop("Parameter 'eValType' must be passed as a string.")
  
  if(! all(is.numeric(N), length(N) == 1, N > 0))
    stop("Parameter 'N' must be passed as a positive number.") 
  
  # transform argvals to list, if necessary
  if(! (is.list(argvals) & all(is.numeric(unlist(argvals)))))
  {
    if(is.numeric(argvals))
      argvals <- list(argvals)
    else
      stop("Parameter 'argvals' must be either passed as a list or as a vector of numerics.")
  }  

  ### check consistency of input data
  p <- length(argvals)
  
  if(length(M) != p)
  { 
    if(length(M) == 1)
    {
      warning("Simulation of tensor product data. The value of M will be used for all dimensions.")
      M <- rep(M, p)
    }  
    else
      stop("M must have the same length as argvals or 1.")
  }
  
  if(length(eFunType) != p)
  { 
    if(length(eFunType) == 1)
    {
      warning("Simulation of tensor product data. The value of eFunType will be used for all dimensions.")
      eFunType <- rep(eFunType, p)
    }  
    else
      stop("eFunType must have the same length as argvals or 1.")
  }
  
  ### generate eigenvalues and scores
  trueVals <- eVal(prod(M), eValType)
  scores <- t(replicate(N, stats::rnorm(prod(M), sd = sqrt(trueVals))))
  
  ### calculate eigenfunctions
  if(p == 1) # one-dimensional domain
  {
    trueFuns <- eFun(argvals = argvals[[1]], M = M, ignoreDeg = ignoreDeg, type = eFunType)
    resX <- scores %*% trueFuns@X
  }  
  else # tensor product of marginal eigenfunctions
  {
    if(is.null(ignoreDeg))
      ignoreDeg <- vector("list", length(M))
    
    trueFuns <- do.call(tensorProduct, mapply(eFun, argvals = argvals, M = M, ignoreDeg = ignoreDeg, type = eFunType))
    
    tmp <- trueFuns@X
    dim(tmp) <- c(prod(M), prod(sapply(argvals, length)))
    resX <- scores %*% tmp
    dim(resX) <- c(N, sapply(argvals, length))
  } 
    
  ### truncated Karhunen-Loeve representation
  simData <- funData(argvals, resX)
  
  return(list(simData = simData,
              trueFuns = trueFuns,
              trueVals = trueVals))
}


#' Simulate multivariate functional data
#' 
#' This function provides a unified simulation structure for multivariate 
#' functional data \eqn{f_1, \ldots, f_N} on one- or two-dimensional domains, 
#' based on a truncated multivariate Karhunen-Loeve representation: \deqn{f_i(t)
#' = \sum_{m = 1}^M \rho_{i,m} \psi_m(t).} The multivariate eigenfunctions 
#' (basis functions) \eqn{\psi_m}  are constructed from univariate orthonormal 
#' bases. There are two different concepts for the construction, that can be 
#' chosen by the parameter \code{type}: A split orthonormal basis (\code{split},
#' only one-dimensional domains) and weighted univariate orthonormal bases 
#' (\code{weighted}, one- and two-dimensional domains). The scores 
#' \eqn{\rho_{i,m}} in the Karhunen-Loeve representation are simulated 
#' independently from a normal distribution with zero mean and decreasing 
#' variance. See Details.
#' 
#' The parameter \code{type} defines how the eigenfunction basis for the 
#' multivariate Karhunen-Loeve representation is constructed: \itemize{ \item 
#' \code{type = "split"}: The basis functions of an underlying 'big' orthonormal
#' basis are split in \code{M} parts, translated and possibly reflected. This 
#' yields an orthonormal basis of multivariate functions with \code{M} 
#' elements. This option is implemented only for one-dimensional domains. \item 
#' \code{type = "weighted":} The multivariate eigenfunction basis consists of 
#' weighted univariate orthonormal bases.  This yields an orthonormal basis of 
#' multivariate functions with \code{M} elements. For data on two-dimensional 
#' domains (images), the univariate basis is constructed as a tensor product of 
#' univariate bases in each direction (x- and y-direction). }
#' 
#' Depending on \code{type}, the other parameters have to be specified as 
#' follows: \subsection{Split 'big' orthonormal basis}{ The parameters \code{M} 
#' (integer), \code{eFunType} (character string) and \code{ignoreDeg} (integer 
#' vector or \code{NULL}) are passed to the function \code{\link{eFun}} to 
#' generate a univariate orthonormal basis on a 'big' interval. Subsequently, 
#' the basis functions are split and translated, such that the \eqn{j}-th part 
#' of the split function is defined on the interval corresponding to 
#' \code{argvals[[j]]}. The elements of the multivariate basis functions are 
#' given by these split parts of the original basis functions multiplied by a 
#' random sign \eqn{\sigma_j \in \{-1,1\}, j = 1, \ldots, p}{\sigma_j in {-1,1},
#' j = 1, \ldots, p}.}
#' 
#' \subsection{Weighted orthonormal bases}{ The parameters \code{argvals, M, 
#' eFunType} and \code{ignoreDeg} are all lists of a similar structure. They are
#' passed element-wise to the function \code{\link{eFun}} to generate 
#' orthonormal basis functions for each element of the multivariate functional 
#' data to be simulated. In case of bivariate elements (images), the 
#' corresponding basis functions are constructed as tensor products of 
#' orthonormal basis functions in each direction (x- and y-direction).
#' 
#' If the \eqn{j}-th element of the simulated data should be defined on a 
#' one-dimensional domain, then \itemize{ \item \code{argvals[[j]]} is a list, 
#' containing one vector of observation points. \item \code{M[[j]]} is an 
#' integer, specifying the number of basis functions to use for this entry. 
#' \item  \code{eFunType[[j]]} is a character string, specifying the type of 
#' orthonormal basis functions to use for this entry (see \code{\link{eFun}} for
#' possible options). \item \code{ignoreDeg[[j]]} is a vector of integers, 
#' specifying the degrees to ignore when constructing the orthonormal basis 
#' functions. The default value is \code{NULL}. }
#' 
#' If the \eqn{j}-th element of the simulated data should be defined on a 
#' two-dimensional domain, then \itemize{ \item \code{argvals[[j]]} is a list, 
#' containing two vectors of observation points, one for each direction 
#' (observation points in x-direction and in y-direction). \item \code{M[[j]]} 
#' is a vector of two integers, giving the number of basis functions for each 
#' direction (x- and y-direction). \item \code{eFunType[[j]]} is a vector of two
#' character strings, giving the type of orthonormal basis functions for each 
#' direction (x- and y-direction, see \code{\link{eFun}} for possible options).
#' The corresponding basis functions are constructed as tensor products of 
#' orthonormal basis functions in each direction. \item \code{ignoreDeg[[j]]} is
#' a list, containing two integer vectors that specify the degrees to ignore 
#' when constructing the orthonormal basis functions in each direction. The 
#' default value is \code{NULL}. } The total number of basis functions (i.e. the
#' product of \code{M[[j]]} for all \code{j}) must be equal!}
#' 
#' @param type A character string, specifying the construction method for the 
#'   multivariate eigenfunctions (either \code{"split"} or \code{"weighted"}). 
#'   See Details.
#' @param argvals A list, containing the observation points for each element of 
#'   the multivariate functional data that is to be simulated. The length of 
#'   \code{argvals} determines the number of elements in the resulting simulated
#'   multivariate functional data. See Details.
#' @param M An integer (\code{type = "split"}) or a list of integers (\code{type
#'   = "weighted"}), giving the number of univariate basis functions to use. See 
#'   Details.
#' @param eFunType A character string (\code{type = "split"})   or a list of 
#'   character strings (\code{type = "weighted"}), specifying the type of 
#'   univariate orthonormal basis functions to use. See Details.
#' @param ignoreDeg A vector of integers (\code{type = "split"})   or a list of 
#'   integer vectors (\code{type = "weighted"}), specifying the degrees to 
#'   ignore when generating the univariate orthonormal bases. Defaults to 
#'   \code{NULL}. See Details.
#' @param eValType A character string, specifying the type of 
#'   eigenvalues/variances used for the simulation of the multivariate functions
#'   based on the truncated Karhunen-Loeve representation. See 
#'   \code{\link{eVal}} for details.
#' @param N An integer, specifying the number of multivariate functions to be 
#'   generated.
#'   
#' @return \item{simData}{A \code{\linkS4class{multiFunData}} object with 
#'   \code{N} observations, representing the simulated multivariate functional 
#'   data.} \item{trueFuns}{A \code{\linkS4class{multiFunData}} object with 
#'   \code{M} observations, representing the multivariate eigenfunction basis 
#'   used for simulating the data.} \item{trueVals}{A vector of numerics, 
#'   representing the eigenvalues used for simulating the data.}
#'   
#' @seealso \code{\linkS4class{multiFunData}}, \code{\link{eFun}}, 
#'   \code{\link{eVal}}, \code{\link{simFunData}}, \code{\link{addError}}, 
#'   \code{\link{sparsify}}.
#'   
#' @references C. Happ, S. Greven (2018): Multivariate Functional Principal 
#'   Component Analysis for Data Observed on Different (Dimensional) Domains. 
#'   Journal of the American Statistical Association, 113(522): 649-659. 
#'   
#' @importFrom stats rnorm
#'   
#' @export simMultiFunData
#'   
#' @examples
#' oldPar <- par(no.readonly = TRUE)
#' 
#' # split
#' split <- simMultiFunData(type = "split", argvals = list(seq(0,1,0.01), seq(-0.5,0.5,0.02)),
#'                  M = 5, eFunType = "Poly", eValType = "linear", N = 7)
#' 
#' par(mfrow = c(1,2))
#' plot(split$trueFuns, main = "Split: True Eigenfunctions", ylim = c(-2,2))
#' plot(split$simData, main = "Split: Simulated Data")
#' 
#' # weighted (one-dimensional domains)
#' weighted1D <- simMultiFunData(type = "weighted",
#'                  argvals = list(list(seq(0,1,0.01)), list(seq(-0.5,0.5,0.02))),
#'                  M = c(5,5), eFunType = c("Poly", "Fourier"), eValType = "linear", N = 7)
#' 
#' plot(weighted1D$trueFuns, main = "Weighted (1D): True Eigenfunctions", ylim = c(-2,2))
#' plot(weighted1D$simData, main = "Weighted (1D): Simulated Data")
#' 
#' # weighted (one- and two-dimensional domains)
#' weighted <- simMultiFunData(type = "weighted",
#'                argvals = list(list(seq(0,1,0.01), seq(0,10,0.1)), list(seq(-0.5,0.5,0.01))),
#'                M = list(c(5,4), 20), eFunType = list(c("Poly", "Fourier"), "Wiener"),
#'                eValType = "linear", N = 7)
#' 
#' plot(weighted$trueFuns, main = "Weighted: True Eigenfunctions (m = 2)", obs = 2)
#' plot(weighted$trueFuns, main = "Weighted: True Eigenfunctions (m = 15)", obs = 15)
#' plot(weighted$simData, main = "Weighted: Simulated Data (1st observation)", obs = 1)
#' plot(weighted$simData, main = "Weighted: Simulated Data (2nd observation)", obs = 2)
#' 
#' par(oldPar)
simMultiFunData <- function(type, argvals, M, eFunType, ignoreDeg = NULL, eValType, N)
{
  if(! all(is.character(type), length(type) == 1))
    stop("Parameter 'type' must be passed as a string.")
  
  if(! (is.list(argvals) & all(is.numeric(unlist(argvals)))) )
    stop("Parameter 'argvals' must be passed as a list of numerics.")
  
  if(! all(is.numeric(unlist(M))))
    stop("Parameter 'M' must contain only numerics.") 
  
  if(! all(is.character(unlist(eFunType))))
    stop("Parameter 'eFunType' must contain only strings.")
  
  if(!(is.null(ignoreDeg ) | all(is.numeric(ignoreDeg), ignoreDeg > 0)))
    stop("Parameter 'ignoreDeg' must be either NULL or a vector of positive numbers.") 
  
  if(! all(is.character(eValType), length(eValType) == 1))
    stop("Parameter 'eValType' must be passed as a string.")
  
  if(! all(is.numeric(N), length(N) == 1, N > 0))
    stop("Parameter 'N' must be passed as a positive number.") 
  
  # generate eigenfunctions
  trueFuns <- switch(type,
                     split = simMultiSplit(argvals, M, eFunType, ignoreDeg, eValType, N),
                     weighted = simMultiWeight(argvals, M, eFunType, ignoreDeg, eValType, N),
                     stop("Choose either 'split' or 'weighted' for the simulation of multivariate functional data.")
  )
  
  # number of eigenfunctions generated
  Mtotal <- nObs(trueFuns)
  
  # number of elements in multivariate functional basis
  p <- length(trueFuns)
  
  # generate eigenvalues and scores
  trueVals <- eVal(Mtotal, eValType)
  scores <- t(replicate(N, stats::rnorm(Mtotal, sd = sqrt(eVal(Mtotal, eValType)))))
  
  # generate individual observations
  simData  <- vector("list", p)
  
  for(j in 1:p)
  {
    X <- apply(trueFuns[[j]]@X, -1, function(v){scores %*% v})
    
    if(N == 1)
      dim(X) <- c(1, nObsPoints(trueFuns[[j]]))
    
    simData[[j]] <- funData(trueFuns[[j]]@argvals, X)
  } 
  
  return(list(simData = multiFunData(simData),
              trueFuns = trueFuns,
              trueVals = trueVals))
}


#' Simulate multivariate eigenfunctions based on a split 'big' ONB
#'
#' @keywords internal
simMultiSplit <- function(argvals, M, eFunType, ignoreDeg = NULL, eValType, N)
{
  # consistency check
  if(any( c(length(M), length(eFunType), length(eValType)) != 1) )
    stop("argvals, M, eFunType, eValType must all be of length 1!")
  
  # number of elements
  p <- length(argvals)
  
  # "rearrange" argvalss
  x <- vector("list", length = length(argvals))
  splitVals <- rep(NA, length(argvals) + 1)
  
  x[[1]] <- unlist(argvals[[1]]) # convert to vector, if argvals[[1]] is a list
  splitVals[1:2] <- c(0, length(x[[1]]))
  
  for(i in 2:p)
  {
    x[[i]] <- unlist(argvals[[i]]) # convert to vector, if argvals[[i]] is a list
    x[[i]] <- argvals[[i]] - min(argvals[[i]]) + max(x[[i-1]])
    splitVals[i+1] <- splitVals[i]+length(x[[i]])
  }
  
  # generate "big" orthonormal system
  f <-  eFun(unlist(x), M, ignoreDeg = ignoreDeg, type = eFunType)
  
  # sample sign randomly
  s <- sample(c(-1,1), p, 0.5)
  
  # result object
  trueFuns  <- vector("list", p)
  
  for(j in 1:p)
    trueFuns[[j]] <- funData(argvals[[j]],  s[j] * f@X[,(1 + splitVals[j]):splitVals[j+1]])
  
  return(multiFunData(trueFuns))
}




#' Simulate multivariate eigenfunctions based on weighted orthonormal bases
#' 
#' @importFrom foreach "%do%"
#' @importFrom stats runif
#'
#' @keywords internal
simMultiWeight <- function(argvals, M, eFunType, ignoreDeg = NULL, eValType, N)
{
  p <- length(argvals)
  
  # dimension for each component
  dimsSupp <- foreach::foreach(j = 1:p, .combine = "c")%do%{length(argvals[[j]])}
  
  if(any(dimsSupp > 2))
    stop("Function simMultiWeight: method is not implemented for objects of dimension > 2!")
  
  if(p > 1)
  {
    if(isTRUE(do.call(all.equal, lapply(M, prod))))
    {
      Mtotal <- prod(M[[1]])
    }
    else
      stop("Function simMultiWeight: basis dimensions must be equal!")
  }
  else
  {
    Mtotal <- prod(M[[1]])
  }
  
  # mixing parameters
  alpha <- stats::runif(p, 0.2, 0.8)
  weight <- sqrt(alpha / sum(alpha))
  
  # generate basis
  basis <- vector("list", p)
  
  for(j in 1:p)
  {
    if(dimsSupp[j] == 1) # one-dimensional
      basis[[j]] <- weight[j] * eFun(argvals[[j]][[1]], M = M[[j]], ignoreDeg = ignoreDeg[[j]], type = eFunType[[j]])
    else # dimsSupp[j] == 2, i.e. two-dimensional
      basis[[j]]  <- weight[j] * tensorProduct(eFun(argvals[[j]][[1]], M = M[[j]][1], ignoreDeg = ignoreDeg[[j]][[1]], type = eFunType[[j]][1]),
                                               eFun(argvals[[j]][[2]], M = M[[j]][2], ignoreDeg = ignoreDeg[[j]][[2]], type = eFunType[[j]][2]))
  }
  
  return(multiFunData(basis))
}

Try the funData package in your browser

Any scripts or data that you put into this service are public.

funData documentation built on Aug. 10, 2018, 1:09 a.m.