Nothing
#' Violin plot
#'
#' A violin plot is a compact display of a continuous distribution. It is a
#' blend of [geom_boxplot()] and [geom_density()]: a
#' violin plot is a mirrored density plot displayed in the same way as a
#' boxplot.
#'
#' @eval rd_orientation()
#'
#' @aesthetics GeomViolin
#' @inheritParams layer
#' @inheritParams geom_bar
#' @param trim If `TRUE` (default), trim the tails of the violins
#' to the range of the data. If `FALSE`, don't trim the tails.
#' @param geom,stat Use to override the default connection between
#' `geom_violin()` and `stat_ydensity()`. For more information about
#' overriding these connections, see how the [stat][layer_stats] and
#' [geom][layer_geoms] arguments work.
#' @param bounds Known lower and upper bounds for estimated data. Default
#' `c(-Inf, Inf)` means that there are no (finite) bounds. If any bound is
#' finite, boundary effect of default density estimation will be corrected by
#' reflecting tails outside `bounds` around their closest edge. Data points
#' outside of bounds are removed with a warning.
#' @param quantile.colour,quantile.color,quantile.linewidth,quantile.linetype
#' Default aesthetics for the quantile lines. Set to `NULL` to inherit from
#' the data's aesthetics. By default, quantile lines are hidden and can be
#' turned on by changing `quantile.linetype`.
#' @param draw_quantiles `r lifecycle::badge("deprecated")` Previous
#' specification of drawing quantiles.
#' @export
#' @references Hintze, J. L., Nelson, R. D. (1998) Violin Plots: A Box
#' Plot-Density Trace Synergism. The American Statistician 52, 181-184.
#' @examples
#' p <- ggplot(mtcars, aes(factor(cyl), mpg))
#' p + geom_violin()
#'
#' # Orientation follows the discrete axis
#' ggplot(mtcars, aes(mpg, factor(cyl))) +
#' geom_violin()
#'
#' \donttest{
#' p + geom_violin() + geom_jitter(height = 0, width = 0.1)
#'
#' # Scale maximum width proportional to sample size:
#' p + geom_violin(scale = "count")
#'
#' # Scale maximum width to 1 for all violins:
#' p + geom_violin(scale = "width")
#'
#' # Default is to trim violins to the range of the data. To disable:
#' p + geom_violin(trim = FALSE)
#'
#' # Use a smaller bandwidth for closer density fit (default is 1).
#' p + geom_violin(adjust = .5)
#'
#' # Add aesthetic mappings
#' # Note that violins are automatically dodged when any aesthetic is
#' # a factor
#' p + geom_violin(aes(fill = cyl))
#' p + geom_violin(aes(fill = factor(cyl)))
#' p + geom_violin(aes(fill = factor(vs)))
#' p + geom_violin(aes(fill = factor(am)))
#'
#' # Set aesthetics to fixed value
#' p + geom_violin(fill = "grey80", colour = "#3366FF")
#'
#' # Show quartiles
#' p + geom_violin(draw_quantiles = c(0.25, 0.5, 0.75))
#'
#' # Scales vs. coordinate transforms -------
#' if (require("ggplot2movies")) {
#' # Scale transformations occur before the density statistics are computed.
#' # Coordinate transformations occur afterwards. Observe the effect on the
#' # number of outliers.
#' m <- ggplot(movies, aes(y = votes, x = rating, group = cut_width(rating, 0.5)))
#' m + geom_violin()
#' m +
#' geom_violin() +
#' scale_y_log10()
#' m +
#' geom_violin() +
#' coord_transform(y = "log10")
#' m +
#' geom_violin() +
#' scale_y_log10() + coord_transform(y = "log10")
#'
#' # Violin plots with continuous x:
#' # Use the group aesthetic to group observations in violins
#' ggplot(movies, aes(year, budget)) +
#' geom_violin()
#' ggplot(movies, aes(year, budget)) +
#' geom_violin(aes(group = cut_width(year, 10)), scale = "width")
#' }
#' }
geom_violin <- function(mapping = NULL, data = NULL,
stat = "ydensity", position = "dodge",
...,
trim = TRUE,
bounds = c(-Inf, Inf),
quantile.colour = NULL,
quantile.color = NULL,
quantile.linetype = 0L,
quantile.linewidth = NULL,
draw_quantiles = deprecated(),
scale = "area",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE) {
extra <- list()
if (lifecycle::is_present(draw_quantiles)) {
deprecate_soft0(
"4.0.0",
what = "geom_violin(draw_quantiles)",
with = "geom_violin(quantiles.linetype)"
)
check_numeric(draw_quantiles)
# Pass on to stat when stat accepts 'quantiles'
stat <- validate_subclass(stat, "Stat", current_call(), caller_env())
if ("quantiles" %in% stat$parameters()) {
extra$quantiles <- draw_quantiles
}
# Turn on quantile lines
if (!is.null(quantile.linetype)) {
quantile.linetype <- max(quantile.linetype, 1)
}
}
quantile_gp <- list(
colour = quantile.color %||% quantile.colour,
linetype = quantile.linetype,
linewidth = quantile.linewidth
)
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomViolin,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list2(
trim = trim,
scale = scale,
na.rm = na.rm,
orientation = orientation,
bounds = bounds,
quantile_gp = quantile_gp,
!!!extra,
...
)
)
}
#' @rdname Geom
#' @format NULL
#' @usage NULL
#' @export
GeomViolin <- ggproto("GeomViolin", Geom,
setup_params = function(data, params) {
params$flipped_aes <- has_flipped_aes(data, params, ambiguous = TRUE)
params
},
extra_params = c("na.rm", "orientation", "lineend", "linejoin", "linemitre"),
setup_data = function(self, data, params) {
data$flipped_aes <- params$flipped_aes
data <- flip_data(data, params$flipped_aes)
data <- compute_data_size(
data, params$width,
default = self$default_aes$width
)
# ymin, ymax, xmin, and xmax define the bounding rectangle for each group
data <- dapply(data, "group", transform,
xmin = x - width / 2,
xmax = x + width / 2
)
flip_data(data, params$flipped_aes)
},
draw_group = function(self, data, ..., quantile_gp = list(linetype = 0), flipped_aes = FALSE) {
data <- flip_data(data, flipped_aes)
# Find the points for the line to go all the way around
data <- transform(data,
xminv = x - violinwidth * (x - xmin),
xmaxv = x + violinwidth * (xmax - x)
)
# Make sure it's sorted properly to draw the outline
newdata <- vec_rbind0(
transform(data, x = xminv)[order(data$y), ],
transform(data, x = xmaxv)[order(data$y, decreasing = TRUE), ]
)
# Close the polygon: set first and last point the same
# Needed for coord_polar and such
newdata <- vec_rbind0(newdata, newdata[1,])
newdata <- flip_data(newdata, flipped_aes)
violin_grob <- GeomPolygon$draw_panel(newdata, ...)
if (!"quantile" %in% names(newdata) ||
all(quantile_gp$linetype == 0) ||
all(quantile_gp$linetype == "blank")) {
return(ggname("geom_violin", violin_grob))
}
# Draw quantiles if requested, so long as there is non-zero y range
quantiles <- newdata[!is.na(newdata$quantile),]
quantiles$group <- match(quantiles$quantile, unique(quantiles$quantile))
quantiles$linetype <- quantile_gp$linetype %||% quantiles$linetype
quantiles$linewidth <- quantile_gp$linewidth %||% quantiles$linewidth
quantiles$colour <- quantile_gp$colour %||% quantiles$colour
quantile_grob <- if (nrow(quantiles) == 0) {
zeroGrob()
} else {
GeomPath$draw_panel(quantiles, ...)
}
ggname("geom_violin", grobTree(violin_grob, quantile_grob))
},
draw_key = draw_key_polygon,
default_aes = aes(
weight = 1,
colour = from_theme(colour %||% col_mix(ink, paper, 0.2)),
fill = from_theme(fill %||% paper),
linewidth = from_theme(borderwidth),
linetype = from_theme(bordertype),
alpha = NA,
width = 0.9
),
required_aes = c("x", "y"),
rename_size = TRUE
)
# Returns a data.frame with info needed to draw quantile segments.
create_quantile_segment_frame <- function(data, draw_quantiles) {
dens <- cumsum(data$density) / sum(data$density)
ecdf <- stats::approxfun(dens, data$y, ties = "ordered")
ys <- ecdf(draw_quantiles) # these are all the y-values for quantiles
# Get the violin bounds for the requested quantiles.
violin.xminvs <- (stats::approxfun(data$y, data$xminv))(ys)
violin.xmaxvs <- (stats::approxfun(data$y, data$xmaxv))(ys)
# We have two rows per segment drawn. Each segment gets its own group.
data_frame0(
x = vec_interleave(violin.xminvs, violin.xmaxvs),
y = rep(ys, each = 2),
group = rep(ys, each = 2)
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.