Nothing
#' Adds missing elements to a vector from a default vector
#'
#' This function appends a given named vector or list with additional elements
#' from a default vector, only adding those that does not already exist in the
#' first.
#'
#' @param x,y Named vectors or lists
#'
#' @return `x` with missing values from `y` appended
#'
#' @keywords internal
#' @noRd
#'
defaults <- function(x, y) c(x, y[setdiff(names(y), names(x))])
# Remove rownames from data frames and matrices
unrowname <- function(x) {
if (is.data.frame(x)) {
attr(x, "row.names") <- .set_row_names(.row_names_info(x, 2L))
} else if (is.matrix(x)) {
dimnames(x)[1] <- list(NULL)
} else {
cli::cli_abort("Can only remove rownames from {.cls data.frame} and {.cls matrix} objects.")
}
x
}
#' Rename elements in a list, data.frame or vector
#'
#' This is akin to `dplyr::rename` and `plyr::rename`. It renames elements given
#' as names in the `replace` vector to the values in the `replace` vector
#' without touching elements not referenced.
#'
#' @param x A data.frame or a named vector or list
#' @param replace A named character vector. The names identifies the elements in
#' `x` that should be renamed and the values gives the new names.
#'
#' @return `x`, with new names according to `replace`
#'
#' @keywords internal
#' @noRd
#'
rename <- function(x, replace) {
current_names <- names(x)
old_names <- names(replace)
missing_names <- setdiff(old_names, current_names)
if (length(missing_names) > 0) {
replace <- replace[!old_names %in% missing_names]
old_names <- names(replace)
}
names(x)[match(old_names, current_names)] <- as.vector(replace)
x
}
# Adapted from plyr:::id_vars
# Create a unique id for elements in a single vector
id_var <- function(x, drop = FALSE) {
if (length(x) == 0) {
id <- integer()
n = 0L
} else if (!is.null(attr(x, "n")) && !drop) {
return(x)
} else if (is.factor(x) && !drop) {
x <- addNA(x, ifany = TRUE)
id <- as.integer(x)
n <- length(levels(x))
} else {
levels <- sort(unique0(x), na.last = TRUE)
id <- match(x, levels)
n <- max(id)
}
attr(id, "n") <- n
id
}
#' Create an unique integer id for each unique row in a data.frame
#'
#' Properties:
#' - `order(id)` is equivalent to `do.call(order, df)`
#' - rows containing the same data have the same value
#' - if `drop = FALSE` then room for all possibilities
#'
#' @param .variables list of variables
#' @param drop Should unused factor levels be dropped?
#'
#' @return An integer vector with attribute `n` giving the total number of
#' possible unique rows
#'
#' @keywords internal
#' @noRd
#'
id <- function(.variables, drop = FALSE) {
nrows <- NULL
if (is.data.frame(.variables)) {
nrows <- nrow(.variables)
.variables <- unclass(.variables)
}
lengths <- lengths(.variables)
.variables <- .variables[lengths != 0]
if (length(.variables) == 0) {
n <- nrows %||% 0L
id <- seq_len(n)
attr(id, "n") <- n
return(id)
}
if (length(.variables) == 1) {
return(id_var(.variables[[1]], drop = drop))
}
ids <- rev(lapply(.variables, id_var, drop = drop))
p <- length(ids)
ndistinct <- vapply(ids, attr, "n", FUN.VALUE = numeric(1), USE.NAMES = FALSE)
n <- prod(ndistinct)
if (n > 2^31) {
char_id <- inject(paste(!!!ids, sep = "\r"))
res <- match(char_id, unique0(char_id))
}
else {
combs <- c(1, cumprod(ndistinct[-p]))
mat <- inject(cbind(!!!ids))
res <- c((mat - 1L) %*% combs + 1L)
}
if (drop) {
id_var(res, drop = TRUE)
}
else {
res <- as.integer(res)
attr(res, "n") <- n
res
}
}
#' Count number of occurrences for each unique combination of variables
#'
#' Each unique combination of the variables in `df` given by `vars` will be
#' identified and their occurrences counted. If `wt_var` is given the counts will
#' be weighted by the values in this column.
#'
#' @param df A data.frame
#' @param vars A vector of column names. If `NULL` all columns in `df` will be
#' used
#' @param wt_var The name of a column to use as weight
#'
#' @return A data.frame with the unique combinations counted along with a `n`
#' column giving the counts
#'
#' @keywords internal
#' @noRd
#'
count <- function(df, vars = NULL, wt_var = NULL) {
df2 <- if (is.null(vars)) df else df[vars]
id <- id(df2, drop = TRUE)
u_id <- !duplicated(id)
labels <- df2[u_id, , drop = FALSE]
labels <- labels[order(id[u_id]), , drop = FALSE]
if (is.null(wt_var)) {
freq <- tabulate(id, attr(id, "n"))
} else {
wt <- .subset2(df, wt_var)
freq <- vapply(split(wt, id), sum, numeric(1))
}
data_frame0(labels, n = freq)
}
# Adapted from plyr::join.keys
# Create a shared unique id across two data frames such that common variable
# combinations in the two data frames gets the same id
join_keys <- function(x, y, by) {
joint <- vec_rbind0(x[by], y[by])
keys <- id(joint, drop = TRUE)
n_x <- nrow(x)
n_y <- nrow(y)
list(x = keys[seq_len(n_x)], y = keys[n_x + seq_len(n_y)],
n = attr(keys, "n"))
}
#' Replace specified values with new values, in a factor or character vector
#'
#' An easy to use substitution of elements in a string-like vector (character or
#' factor). If `x` is a character vector the matching elements will be replaced
#' directly and if `x` is a factor the matching levels will be replaced
#'
#' @param x A character or factor vector
#' @param replace A named character vector with the names corresponding to the
#' elements to replace and the values giving the replacement.
#'
#' @return A vector of the same class as `x` with the given values replaced
#'
#' @keywords internal
#' @noRd
#'
revalue <- function(x, replace) {
if (is.character(x)) {
replace <- replace[names(replace) %in% x]
if (length(replace) == 0) return(x)
x[match(names(replace), x)] <- replace
} else if (is.factor(x)) {
lev <- levels(x)
replace <- replace[names(replace) %in% lev]
if (length(replace) == 0) return(x)
lev[match(names(replace), lev)] <- replace
levels(x) <- lev
} else if (!is.null(x)) {
stop_input_type(x, "a factor or character vector")
}
x
}
# Iterate through a formula and return a quoted version
simplify_formula <- function(x) {
if (length(x) == 2 && x[[1]] == as.name("~")) {
return(simplify(x[[2]]))
}
if (length(x) < 3)
return(list(x))
op <- x[[1]]
a <- x[[2]]
b <- x[[3]]
if (op == as.name("+") || op == as.name("*") || op ==
as.name("~")) {
c(simplify(a), simplify(b))
}
else if (op == as.name("-")) {
c(simplify(a), bquote(-.(x), list(x = simplify(b))))
}
else {
list(x)
}
}
#' Create a quoted version of x
#'
#' This function captures the special meaning of formulas in the context of
#' facets in ggplot2, where `+` have special meaning. It works as
#' `plyr::as.quoted` but only for the special cases of `character`, `call`, and
#' `formula` input as these are the only situations relevant for ggplot2.
#'
#' @param x A formula, string, or call to be quoted
#' @param env The environment to a attach to the quoted expression.
#'
#' @keywords internal
#' @noRd
#'
as.quoted <- function(x, env = parent.frame()) {
x <- if (is.character(x)) {
lapply(x, function(x) parse(text = x)[[1]])
} else if (is.formula(x)) {
simplify_formula(x)
} else if (is.call(x)) {
as.list(x)[-1]
} else {
cli::cli_abort("Must be a character vector, call, or formula.")
}
attributes(x) <- list(env = env, class = 'quoted')
x
}
# round a number to a given precision
round_any <- function(x, accuracy, f = round) {
check_numeric(x)
f(x/accuracy) * accuracy
}
#' Apply function to unique subsets of a data.frame
#'
#' This function is akin to `plyr::ddply`. It takes a single data.frame,
#' splits it by the unique combinations of the columns given in `by`, apply a
#' function to each split, and then reassembles the results into a sigle
#' data.frame again.
#'
#' @param df A data.frame
#' @param by A character vector of column names to split by
#' @param fun A function to apply to each split
#' @param ... Further arguments to `fun`
#' @param drop Should unused factor levels in the columns given in `by` be
#' dropped.
#'
#' @return A data.frame if the result of `fun` does not include the columns
#' given in `by` these will be prepended to the result.
#'
#' @keywords internal
#' @noRd
dapply <- function(df, by, fun, ..., drop = TRUE) {
grouping_cols <- .subset(df, by)
fallback_order <- unique0(c(by, names(df)))
apply_fun <- function(x) {
res <- fun(x, ...)
if (is.null(res)) return(res)
if (length(res) == 0) return(data_frame0())
vars <- lapply(setNames(by, by), function(col) .subset2(x, col)[1])
if (is.matrix(res)) res <- split_matrix(res)
if (is.null(names(res))) names(res) <- paste0("V", seq_along(res))
if (all(by %in% names(res))) return(data_frame0(!!!unclass(res)))
res <- modify_list(unclass(vars), unclass(res))
res <- res[intersect(c(fallback_order, names(res)), names(res))]
data_frame0(!!!res)
}
# Shortcut when only one group
if (all(vapply(grouping_cols, single_value, logical(1)))) {
return(apply_fun(df))
}
ids <- id(grouping_cols, drop = drop)
group_rows <- split_with_index(seq_len(nrow(df)), ids)
result <- lapply(seq_along(group_rows), function(i) {
cur_data <- df_rows(df, group_rows[[i]])
apply_fun(cur_data)
})
vec_rbind0(!!!result)
}
single_value <- function(x, ...) {
UseMethod("single_value")
}
#' @export
single_value.default <- function(x, ...) {
# This is set by id() used in creating the grouping var
identical(attr(x, "n"), 1L)
}
#' @export
single_value.factor <- function(x, ...) {
# Panels are encoded as factor numbers and can never be missing (NA)
identical(levels(x), "1")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.