R/facet-.R

Defines functions map_facet_data censor_labels render_strips render_axes combine_vars panel_rows panel_cols find_panel max_width max_height check_facet_vars check_layout layout_null eval_facet eval_facets f_as_facets as_facets simplify as_quoted compact_facets check_vars as_facets_list df.grid unique_combs get_strip_labels is.facet is_facet vars

Documented in combine_vars find_panel get_strip_labels is_facet is.facet max_height max_width panel_cols panel_rows render_axes render_strips vars

#' @include ggproto.R
NULL

#' Facets
#'
#' @description
#' All `facet_*()` functions returns a `Facet` object or an object of a
#' `Facet` subclass. This object describes how to assign data to different
#' panels, how to apply positional scales and how to lay out the panels, once
#' rendered.
#'
#' @details
#' Extending facets can range from the simple modifications of current facets,
#' to very laborious rewrites with a lot of [`gtable()`][gtable::gtable()]
#' manipulation.For some examples of both, please see the extension vignette.
#' The object and its parameters are chaperoned by the [Layout] class.
#'
#' `Facet` subclasses, like other extendible ggproto classes, have a range
#' of methods that can be modified. Some of these are required for all new
#' subclasses, while other only need to be modified if need arises.
#'
#' The required methods are:
#' * `compute_layout`
#' * `map_data()`
#' * `draw_panels()` or its subsidiaries:
#'     * `init_gtable()`
#'     * `attach_axes()`
#'     * `attach_strips()`
#'
#' In addition to the methods above, it can be useful to override the default
#' behaviour of one or more of the following methods:
#'
#' * `setup_params()`
#' * `init_scales()`
#' * `train_scale()`
#' * `finish_data()`
#' * `draw_back()`, `draw_front()` or `draw_labels()`
#'
#' All extension methods receive the content of the params field as the params
#' argument, so the constructor function will generally put all relevant
#' information into this field.
#'
#' @section Conventions:
#'
#' The object name that a new class is assigned to is typically the same as the
#' class name. Facet class names are in UpperCamelCase and start with the
#' `Facet*` prefix, like `FacetNew`.
#'
#' A constructor function is usually paired with a Facet class. The constructor
#' copies the facet class and populates the `params` field. The constructor
#' function name should take the Facet class name and be formatted with
#' snake_case, so that `FacetNew` becomes `facet_new()`.
#'
#' @export
#' @format NULL
#' @usage NULL
#' @family Layout components
#' @keywords internal
#' @seealso The the `r link_book("new facets section", "extensions#new-facets")`
#' @seealso Run `vignette("extending-ggplot2")`, in particular the "Creating a
#' new faceting" section.
#'
#' @examples
#' # Please see extension vignette
#' NULL
Facet <- ggproto("Facet", NULL,

  # Fields ------------------------------------------------------------------

  #' @field shink A scalar boolean which when `TRUE`, will shrink scales to
  #' fit output statistics rather than raw data. If `FALSE`, will only include
  #' raw data before statistical summary. By exception this is not part of the
  #' `params` field.
  # TODO: should just put `shrink` in the params?
  shrink = FALSE,

  #' @field params A named list of parameters populated by the constructor
  #' function.
  params = list(),

  # Methods -----------------------------------------------------------------

  ## Layout$setup() ---------------------------------------------------------

  #' @field setup_params
  #' **Description**
  #'
  #' A function method for modifying or checking the parameters based on the
  #' data. The default method includes a `.possible_columns` variable giving
  #' column names.
  #'
  #' **Usage**
  #' ```r
  #' Facet$setup_params(data, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`data`}{A list of data frames. The first item is the global data,
  #'   which is followed by layer data in subsequent items.}
  #'   \item{`params`}{A list of current parameters.}
  #' }
  #'
  #' **Value**
  #'
  #' A list of parameters
  setup_params = function(data, params) {
    params$.possible_columns <- unique0(unlist(lapply(data, names)))
    params
  },

  #' @field setup_data
  #' **Description**
  #'
  #' A function method for modifying or checking the data prior to adding
  #' defaults. The default method returns data unaltered.
  #'
  #' **Usage**
  #' ```r
  #' Facet$setup_data(data, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`data`}{A list of data frames. The first item is the global data,
  #'   which is followed by layer data in subsequent items.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A list of data frames of the same length as the `data` argument
  setup_data = function(data, params) {
    data
  },

  #' @field compute_layout
  #' **Description**
  #'
  #' A function method for creating the correspondence between faceting
  #' variable levels, panels and position scales. It places panels like cells
  #' in a matrix.
  #'
  #' **Usage**
  #' ```r
  #' Facet$compute_layout(data, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`data`}{A list of data frames. The first item is the global data,
  #'   which is followed by layer data in subsequent items.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A data frame with 1 row per panel, containing at least integer columns
  #' `ROW`, `COL`, `PANEL`, `SCALE_X` and `SCALE_Y`. Can contain additional
  #' information in terms of columns, typically faceting variables.
  compute_layout = function(data, params) {
    cli::cli_abort("Not implemented.")
  },

  #' @field map_data
  #' **Description**
  #'
  #' A function method for to create the `PANEL` variable in layer data. The
  #' `PANEL` variable is a special variable that tracks the relationship between
  #' rows in the layer data and the panels described in the `layout` input.
  #'
  #' In addition, #' this function may copy or discard rows as needed, for
  #' example when adding margins in FacetGrid.
  #'
  #' **Usage**
  #' ```r
  #' Facet$map_data(data, layout, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`data`}{A list of data frames containing layer data.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A list of data frames containing layer data including a `PANEL` variable.
  map_data = function(data, layout, params) {
    cli::cli_abort("Not implemented.")
  },

  ## Layout$train_position() -----------------------------------------------

  #' @field init_scales
  #' **Description**
  #'
  #' A function method for initialising position scales. Given a prototype scale
  #' for `x` and `y`, creates layout specific scales to accommodate
  #' the relationships between panels and scales. By default, the prototype
  #' scales are cloned for each `SCALE_X` and `SCALE_Y` level. The function is
  #' called separately; once for `x` and once for `y`.
  #'
  #' **Usage**
  #' ```r
  #' Facet$init_scales(layout, x_scale, y_scale, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`x_scale`,`y_scale`}{A position scale for the `x` and `y`
  #'   aesthetics respectively.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A named list with `x` and `y` elements containing a list of panel scales
  #' for each `SCALE_X` and/or `SCALE_Y` level respectively.
  init_scales = function(layout, x_scale = NULL, y_scale = NULL, params) {
    scales <- list()
    if (!is.null(x_scale)) {
      scales$x <- lapply(seq_len(max(layout$SCALE_X)), function(i) x_scale$clone())
    }
    if (!is.null(y_scale)) {
      scales$y <- lapply(seq_len(max(layout$SCALE_Y)), function(i) y_scale$clone())
    }
    scales
  },

  #' @field train_scales
  #' **Description**
  #'
  #' A function method for training position scales. The default trains each
  #' scale on the data related to its panels.
  #'
  #' **Usage**
  #' ```r
  #' Facet$train_scales(x_scales, y_scales, layout, data, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`x_scales`,`y_scales`}{A list of panel scales for each `SCALE_X`
  #'   and `SCALE_Y` level respectively.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`data`}{A list of data frames containing layer data.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' Nothing, this method is called for its side-effect of training the scales.
  train_scales = function(x_scales, y_scales, layout, data, params) {
    # loop over each layer, training x and y scales in turn
    for (layer_data in data) {
      match_id <- NULL

      if (!is.null(x_scales)) {
        x_vars <- intersect(x_scales[[1]]$aesthetics, names(layer_data))
        if (length(x_vars) > 0) {
          match_id <- match(layer_data$PANEL, layout$PANEL)
          SCALE_X <- layout$SCALE_X[match_id]
          scale_apply(layer_data, x_vars, "train", SCALE_X, x_scales)
        }
      }

      if (!is.null(y_scales)) {
        y_vars <- intersect(y_scales[[1]]$aesthetics, names(layer_data))
        if (length(y_vars) > 0) {
          if (is.null(match_id)) {
            match_id <- match(layer_data$PANEL, layout$PANEL)
          }
          SCALE_Y <- layout$SCALE_Y[match_id]

          scale_apply(layer_data, y_vars, "train", SCALE_Y, y_scales)
        }
      }
    }
  },

  ## Layout$setup_panel_params() --------------------------------------------

  #' @field setup_panel_params
  #' **Description**
  #'
  #' A function method as a hook to give facets input over panel parameters. By
  #' default, returns panel parameters unaltered.
  #'
  #' **Usage**
  #' ```r
  #' Facet$setup_panel_params(panel_params, coord, ...)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`panel_params`}{A named list of view scales, ranges and other
  #'   optional parameters from `Coord$setup_panel_params()`.}
  #'   \item{`coord`}{A `<Coord>` ggproto object.}
  #'   \item{`...`}{Currently not in use. For future expansion.}
  #' }
  #'
  #' **Value**
  #'
  #' A list of panel parameters.
  setup_panel_params = function(self, panel_params, coord, ...) {
    panel_params
  },

  ## Layout$finish_data() --------------------------------------------------

  #' @field finish_data
  #' **Description**
  #'
  #' A function method as a hook for making last-minute modifications to layer
  #' data before it is rendered by Geoms. The default is to not modify the data.
  #'
  #' **Usage**
  #' ```r
  #' Facet$finish_data(data, layout, x_scales, y_scales, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`data`}{A data frame containing layer data of a single layer.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`x_scales`,`y_scales`}{A list of panel scales for each `SCALE_X`
  #'   and `SCALE_Y` level respectively.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A data frame containing layer data.
  finish_data = function(data, layout, x_scales, y_scales, params) {
    data
  },

  ## Layout$render() -------------------------------------------------------

  #' @field draw_panel_content
  #' **Description**
  #'
  #' A function method to assemble the panel contents. It delegates the
  #' `draw_back()` and `draw_front()` methods, as well as `Coord$draw_panel()`.
  #'
  #' **Usage**
  #' ```r
  #' Facet$draw_panel_content(
  #'   panels,
  #'   layout,
  #'   x_scales,
  #'   y_scales,
  #'   ranges,
  #'   coord,
  #'   theme,
  #'   params,
  #'   ...
  #' )
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`panels`}{A list parallel to layers. Each element is another list
  #'   with grobs for each panel, generated by `Layer$draw_geom()`.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`x_scales`,`y_scales`}{A list of panel scales for each `SCALE_X`
  #'   and `SCALE_Y` level respectively.}
  #'   \item{`ranges`}{A list of panel parameters from the
  #'   `setup_panel_params()` augmented with position guides.}
  #'   \item{`coord`}{A `<Coord>` ggproto object.}
  #'   \item{`data`}{A list of data frames containing layer data.}
  #'   \item{`theme`}{A [complete theme][complete_theme()] object.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #'   \item{`...`}{Currently not in use.}
  #' }
  #'
  #' **Value**
  #'
  #' A list of grobs, one for each level of the `PANEL` layout variable. Grob
  #' can be `zeroGrob()` to draw nothing.
  draw_panel_content = function(self, panels, layout, x_scales, y_scales,
                                ranges, coord, data, theme, params, ...) {
    facet_bg <- self$draw_back(
      data,
      layout,
      x_scales,
      y_scales,
      theme,
      params
    )
    facet_fg <- self$draw_front(
      data,
      layout,
      x_scales,
      y_scales,
      theme,
      params
    )

    # Draw individual panels, then call `$draw_panels()` method to
    # assemble into gtable
    lapply(seq_along(panels[[1]]), function(i) {
      panel <- lapply(panels, `[[`, i)
      panel <- c(facet_bg[i], panel, facet_fg[i])
      panel <- coord$draw_panel(panel, ranges[[i]], theme)
      ggname(paste("panel", i, sep = "-"), panel)
    })
  },

  #' @field draw_back,draw_front
  #' **Description**
  #'
  #' A function method draw facet background (back) and foreground (front) for
  #' panels. The front and back will sandwich the grobs created by layers. The
  #' default methods draw nothing.
  #'
  #' **Usage**
  #' ```r
  #' Facet$draw_back(data, layout, x_scales, y_scales, theme, params)
  #' Facet$draw_front(data, layout, x_scales, y_scales, theme, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`data`}{A list of data frames containing layer data.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`x_scales`,`y_scales`}{A list of panel scales for each `SCALE_X`
  #'   and `SCALE_Y` level respectively.}
  #'   \item{`theme`}{A [complete theme][complete_theme()] object.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A list of grobs, one for each level of the `PANEL` layout variable. Grob
  #' can be `zeroGrob()` to draw nothing.
  draw_back = function(data, layout, x_scales, y_scales, theme, params) {
    rep(list(zeroGrob()), vec_unique_count(layout$PANEL))
  },

  draw_front = function(data, layout, x_scales, y_scales, theme, params) {
    rep(list(zeroGrob()), vec_unique_count(layout$PANEL))
  },

  #' @field draw_panels
  #' **Description**
  #'
  #' A function method that orchestrates the majority of facet drawing. It is
  #' responsible for assembling a gtable with panel content decorated with axes
  #' and strips. The resulting gtable is the basis for the plot in its entirety.
  #' It delegates these tasks to the `init_gtable()`, `attach_axes()` and
  #' `attach_strips()` methods.
  #'
  #' **Usage**
  #' ```r
  #' Facet$draw_panels(
  #'   panels,
  #'   layout,
  #'   x_scales,
  #'   y_scales,
  #'   ranges,
  #'   coord,
  #'   data,
  #'   theme,
  #'   params
  #' )
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`panels`}{A list of grobs, one per panel.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`x_scales`,`y_scales`}{A list of panel scales for each `SCALE_X`
  #'   and `SCALE_Y` level respectively.}
  #'   \item{`ranges`}{A list of panel parameters from the
  #'   `setup_panel_params()` augmented with position guides.}
  #'   \item{`coord`}{A `<Coord>` ggproto object.}
  #'   \item{`data`}{A list of data frames containing layer data.}
  #'   \item{`theme`}{A [complete theme][complete_theme()] object.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A [`gtable`][gtable::gtable()] object.
  draw_panels = function(self, panels, layout, x_scales = NULL, y_scales = NULL,
                         ranges, coord, data = NULL, theme, params) {

    free  <- params$free       %||% list(x = FALSE, y = FALSE)
    space <- params$space_free %||% list(x = FALSE, y = FALSE)

    aspect_ratio <- theme$aspect.ratio
    if (!is.null(aspect_ratio) && (space$x || space$y)) {
      cli::cli_abort("Free scales cannot be mixed with a fixed aspect ratio.")
    }

    if (!coord$is_free()) {
      if (space$x && space$y) {
        aspect_ratio <- aspect_ratio %||% coord$ratio
      } else if (free$x || free$y) {
        msg <- paste0("{.fn {snake_class(self)}} can't use free scales with ",
                      "{.fn {snake_class(coord)}}")
        if (!is.null(coord$ratio)) {
          msg <- paste0(msg, " with a fixed {.arg ratio} argument")
        }
        cli::cli_abort(paste0(msg, "."))
      }
    }

    table <- self$init_gtable(
      panels, layout, theme, ranges, params,
      aspect_ratio = aspect_ratio %||% coord$aspect(ranges[[1]])
    )

    table <- self$attach_axes(table, layout, ranges, coord, theme, params)
    self$attach_strips(table, layout, params, theme)
  },

  #' @field init_gtable
  #' **Description**
  #'
  #' A function method that initiates a gtable object containing panels set
  #' at the appropriate `ROW` and `COL` cells from the layout. The panels are
  #' separated by the `panel.spacing.{x/y}` spacing.
  #'
  #' **Usage**
  #' ```r
  #' Facet$init_gtable(panels, layout, theme, ranges, params, aspect_ratio)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`panels`}{A list of grobs, one per panel.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`theme`}{A [complete theme][complete_theme()] object.}
  #'   \item{`ranges`}{A list of panel parameters from the
  #'   `setup_panel_params()` augmented with position guides.}
  #'   \item{`aspect_ratio`}{A scalar numeric for the panel aspect ratio or
  #'   `NULL` for no aspect ratio.}
  #' }
  #'
  #' **Value**
  #'
  #' A [`gtable`][gtable::gtable()] object containing panel grobs prefixed with
  #' `"panel"`.
  init_gtable = function(panels, layout, theme, ranges, params,
                         aspect_ratio = NULL) {

    # Initialise matrix of panels
    dim   <- c(max(layout$ROW), max(layout$COL))
    table <- matrix(list(zeroGrob()), dim[1], dim[2])
    table[cbind(layout$ROW, layout$COL)] <- panels

    # Set initial sizes
    widths  <- unit(rep(1, dim[2]), "null")
    heights <- unit(rep(1 * abs(aspect_ratio %||% 1), dim[1]), "null")

    # When space are free, let panel parameter limits determine size of panel
    space <- params$space_free %||% list(x = FALSE, y = FALSE)
    if (space$x) {
      idx    <- layout$PANEL[layout$ROW == 1]
      widths <- vapply(idx, function(i) diff(ranges[[i]]$x.range), numeric(1))
      widths <- unit(widths, "null")
    }

    if (space$y) {
      idx <- layout$PANEL[layout$COL == 1]
      heights <- vapply(idx, function(i) diff(ranges[[i]]$y.range), numeric(1))
      heights <- unit(heights * abs(aspect_ratio %||% 1), "null")
    }

    # Build gtable
    table <- gtable_matrix(
      "layout", table,
      widths = widths, heights = heights,
      respect = !is.null(aspect_ratio),
      clip = "off", z = matrix(1, dim[1], dim[2])
    )

    # Set panel names
    table$layout$name <- paste(
      "panel",
      rep(seq_len(dim[2]), each = dim[1]),
      rep(seq_len(dim[1]), dim[2]),
      sep = "-"
    )

    # Add spacing between panels
    spacing <- lapply(
      c(x = "panel.spacing.x", y = "panel.spacing.y"),
      calc_element, theme = theme
    )

    table <- gtable_add_col_space(table, spacing$x)
    table <- gtable_add_row_space(table, spacing$y)
    table
  },

  #' @field attach_axes
  #' **Description**
  #'
  #' A function method that renders position guides (axes) and attaches these
  #' to the gtable with panels. The default method returns the gtable unaltered.
  #'
  #' **Usage**
  #' ```r
  #' Facet$attach_axes(table, layout, ranges, coord, theme, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`table`}{A [`gtable`][gtable::gtable()] object populated with panels from the
  #'   `init_gtable()` method.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`ranges`}{A list of panel parameters from the
  #'   `setup_panel_params()` augmented with position guides.}
  #'   \item{`coord`}{A `<Coord>` ggproto object.}
  #'   \item{`theme`}{A [complete theme][complete_theme()] object.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A [`gtable`][gtable::gtable()] object.
  attach_axes = function(table, layout, ranges, coord, theme, params) {
    table
  },

  #' @field attach_strips
  #' **Description**
  #'
  #' A function method that renders strips and attaches these to the gtable
  #' with panels and axes. The `format_strip_labels()` method is used to format
  #' the strip text. The default method returns the gtable unaltered.
  #'
  #' **Usage**
  #' ```r
  #' Facet$attach_strips(table, layout, ranges, coord, theme, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`table`}{A [`gtable`][gtable::gtable()] object from the `attach_axes()`
  #'   method.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #'   \item{`theme`}{A [complete theme][complete_theme()] object.}
  #' }
  #'
  #' **Value**
  #'
  #' A [`gtable`][gtable::gtable()] object.
  attach_strips = function(table, layout, params, theme) {
    table
  },

  #' @field format_strip_labels
  #' **Description**
  #'
  #' A function method that formats the text for strips. It is used in the
  #' `attach_strips` methods, but also the `get_strip_labels()` function.
  #' The default method returns `NULL`.
  #'
  #' **Usage**
  #' ```r
  #' Facet$format_strip_labels(layout, params)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A list containing a data frame with strip labels.
  format_strip_labels = function(layout, params) {
    return()
  },

  #' @field set_panel_size
  #' **Description**
  #'
  #' A function method that enforces the `panel.widths` and `panel.heights`
  #' theme settings.
  #'
  #' **Usage**
  #' ```r
  #' Facet$set_panel_size(table, theme)
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`table`}{A [`gtable`][gtable::gtable()] object populated by the
  #'   `draw_panels()` method.}
  #'   \item{`theme`}{A [complete theme][complete_theme()] object.}
  #' }
  #'
  #' **Value**
  #'
  #' The `table` object, optionally with different `widths` and `heights`
  #' properties.
  set_panel_size = function(table, theme) {

    new_widths  <- calc_element("panel.widths",  theme)
    new_heights <- calc_element("panel.heights", theme)

    if (is.null(new_widths) && is.null(new_heights)) {
      return(table)
    }

    if (isTRUE(table$respect)) {
      args <- !c(is.null(new_widths), is.null(new_heights))
      args <- c("panel.widths", "panel.heights")[args]
      cli::cli_warn(
        "Aspect ratios are overruled by {.arg {args}} theme element{?s}."
      )
      table$respect <- FALSE
    }

    rows <- panel_rows(table)
    cols <- panel_cols(table)

    if (length(new_widths) == 1L && nrow(cols) > 1L) {
      # Get total size of non-panel widths in between panels
      extra <- setdiff(seq(min(cols$l), max(cols$r)), union(cols$l, cols$r))
      extra <- unit(sum(width_cm(table$widths[extra])), "cm")
      # Distribute width proportionally
      relative   <- as.numeric(table$widths[cols$l]) # assumed to be simple units
      new_widths <- (new_widths - extra) * (relative / sum(relative))
    }
    if (!is.null(new_widths)) {
      table$widths[cols$l] <- rep(new_widths, length.out = nrow(cols))
    }

    if (length(new_heights) == 1L && nrow(rows) > 1L) {
      # Get total size of non-panel heights in between panels
      extra <- setdiff(seq(min(rows$t), max(rows$t)), union(rows$t, rows$b))
      extra <- unit(sum(height_cm(table$heights[extra])), "cm")
      # Distribute height proportionally
      relative    <- as.numeric(table$heights[rows$t]) # assumed to be simple units
      new_heights <- (new_heights - extra) * (relative / sum(relative))
    }
    if (!is.null(new_heights)) {
      table$heights[rows$t] <- rep(new_heights, length.out = nrow(rows))
    }

    table
  },

  #' @field attach_axes
  #' **Description**
  #'
  #' A function method that renders axis titles and adds them to the gtable.
  #' The default is to add one title at each side depending on the position
  #' and presence of axes.
  #'
  #' **Usage**
  #' ```r
  #' Facet$draw_labels(
  #'   panels,
  #'   layout,
  #'   x_scales,
  #'   y_scales,
  #'   ranges,
  #'   coord,
  #'   data,
  #'   theme,
  #'   labels,
  #'   params
  #' )
  #' ```
  #' **Arguments**
  #' \describe{
  #'   \item{`panels`}{A [`gtable`][gtable::gtable()] object initiated by the
  #'   `draw_panels()` method.}
  #'   \item{`layout`}{A data frame computed by the `compute_layout()` method.
  #'   Typically contains the faceting variables, `ROW`, `COL`, `PANEL`,
  #'   `SCALE_X` and `SCALE_Y` variables.}
  #'   \item{`x_scales`,`y_scales`}{A list of panel scales for each `SCALE_X`
  #'   and `SCALE_Y` level respectively.}
  #'   \item{`ranges`}{A list of panel parameters from the
  #'   `setup_panel_params()` augmented with position guides.}
  #'   \item{`coord`}{A `<Coord>` ggproto object.}
  #'   \item{`data`}{A list of data frames containing layer data.}
  #'   \item{`theme`}{A [complete theme][complete_theme()] object.}
  #'   \item{`labels`}{A named list containing an `x` list and `y` list. The
  #'   `x` and `y` lists have `primary` and `secondary` labels.}
  #'   \item{`params`}{A list of parameters coming from the `setup_params()`
  #'   method.}
  #' }
  #'
  #' **Value**
  #'
  #' A [`gtable`][gtable::gtable()] object.
  draw_labels = function(panels, layout, x_scales, y_scales, ranges, coord, data, theme, labels, params) {
    panel_dim <-  find_panel(panels)

    xlab_height_top <- grobHeight(labels$x[[1]])
    panels <- gtable_add_rows(panels, xlab_height_top, pos = 0)
    panels <- gtable_add_grob(panels, labels$x[[1]], name = "xlab-t",
      l = panel_dim$l, r = panel_dim$r, t = 1, clip = "off")

    xlab_height_bottom <- grobHeight(labels$x[[2]])
    panels <- gtable_add_rows(panels, xlab_height_bottom, pos = -1)
    panels <- gtable_add_grob(panels, labels$x[[2]], name = "xlab-b",
      l = panel_dim$l, r = panel_dim$r, t = -1, clip = "off")

    panel_dim <-  find_panel(panels)

    ylab_width_left <- grobWidth(labels$y[[1]])
    panels <- gtable_add_cols(panels, ylab_width_left, pos = 0)
    panels <- gtable_add_grob(panels, labels$y[[1]], name = "ylab-l",
      l = 1, b = panel_dim$b, t = panel_dim$t, clip = "off")

    ylab_width_right <- grobWidth(labels$y[[2]])
    panels <- gtable_add_cols(panels, ylab_width_right, pos = -1)
    panels <- gtable_add_grob(panels, labels$y[[2]], name = "ylab-r",
      l = -1, b = panel_dim$b, t = panel_dim$t, clip = "off")

    panels
  },

  ## Utilities -------------------------------------------------------------

  #' @field vars
  #' **Description**
  #'
  #' A function method that returns the names of faceting variables. The
  #' default method returns an character vector with 0 length.
  #'
  #' **Usage**
  #' ```r
  #' Facet$vars()
  #' ```
  #'
  #' **Value**
  #'
  #' A character vector
  vars = function() {
    character(0)
  }
)

# Helpers -----------------------------------------------------------------

#' Quote faceting variables
#'
#' @description
#' Just like [aes()], `vars()` is a [quoting function][rlang::quotation]
#' that takes inputs to be evaluated in the context of a dataset.
#' These inputs can be:
#'
#' * variable names
#' * complex expressions
#'
#' In both cases, the results (the vectors that the variable
#' represents or the results of the expressions) are used to form
#' faceting groups.
#'
#' @param ... <[`data-masking`][rlang::topic-data-mask]> Variables or
#'   expressions automatically quoted. These are evaluated in the context of the
#'   data to form faceting groups. Can be named (the names are passed to a
#'   [labeller][labellers]).
#'
#' @seealso [aes()], [facet_wrap()], [facet_grid()]
#' @export
#' @examples
#' p <- ggplot(mtcars, aes(wt, disp)) + geom_point()
#' p + facet_wrap(vars(vs, am))
#'
#' # vars() makes it easy to pass variables from wrapper functions:
#' wrap_by <- function(...) {
#'   facet_wrap(vars(...), labeller = label_both)
#' }
#' p + wrap_by(vs)
#' p + wrap_by(vs, am)
#'
#' # You can also supply expressions to vars(). In this case it's often a
#' # good idea to supply a name as well:
#' p + wrap_by(drat = cut_number(drat, 3))
#'
#' # Let's create another function for cutting and wrapping a
#' # variable. This time it will take a named argument instead of dots,
#' # so we'll have to use the "enquote and unquote" pattern:
#' wrap_cut <- function(var, n = 3) {
#'   # Let's enquote the named argument `var` to make it auto-quoting:
#'   var <- enquo(var)
#'
#'   # `as_label()` will create a nice default name:
#'   nm <- as_label(var)
#'
#'   # Now let's unquote everything at the right place. Note that we also
#'   # unquote `n` just in case the data frame has a column named
#'   # `n`. The latter would have precedence over our local variable
#'   # because the data is always masking the environment.
#'   wrap_by(!!nm := cut_number(!!var, !!n))
#' }
#'
#' # Thanks to tidy eval idioms we now have another useful wrapper:
#' p + wrap_cut(drat)
vars <- function(...) {
  quos(...)
}

#' @export
#' @rdname is_tests
is_facet <- function(x) inherits(x, "Facet")

#' @export
#' @rdname is_tests
#' @usage is.facet(x) # Deprecated
is.facet <- function(x) {
  deprecate_soft0("3.5.2", "is.facet()", "is_facet()")
  is_facet(x)
}

#' Accessing a plot's facet strip labels
#'
#' This functions retrieves labels from facet strips with the labeller applied.
#'
#' @param plot A ggplot or build ggplot object.
#'
#' @return `NULL` if there are no labels, otherwise a list of data.frames
#'   containing the labels.
#' @export
#' @keywords internal
#'
#' @examples
#' # Basic plot
#' p <- ggplot(mpg, aes(displ, hwy)) +
#'   geom_point()
#'
#' get_strip_labels(p) # empty facets
#' get_strip_labels(p + facet_wrap(year ~ cyl))
#' get_strip_labels(p + facet_grid(year ~ cyl))
get_strip_labels <- function(plot = get_last_plot()) {
  plot   <- ggplot_build(plot)
  layout <- plot@layout$layout
  params <- plot@layout$facet_params
  plot@plot@facet$format_strip_labels(layout, params)
}

# A "special" value, currently not used but could be used to determine
# if faceting is active
NO_PANEL <- -1L

unique_combs <- function(df) {
  if (length(df) == 0) return()

  unique_values <- lapply(df, ulevels)
  rev(expand.grid(rev(unique_values), stringsAsFactors = FALSE,
    KEEP.OUT.ATTRS = TRUE))
}

df.grid <- function(a, b) {
  if (is.null(a) || nrow(a) == 0) return(b)
  if (is.null(b) || nrow(b) == 0) return(a)

  indexes <- expand.grid(
    i_a = seq_len(nrow(a)),
    i_b = seq_len(nrow(b))
  )
  vec_cbind(
    unrowname(a[indexes$i_a, , drop = FALSE]),
    unrowname(b[indexes$i_b, , drop = FALSE])
  )
}

# A facets spec is a list of facets. A grid facetting needs two facets
# while a wrap facetting flattens all dimensions and thus accepts any
# number of facets.
#
# A facets is a list of grouping variables. They are typically
# supplied as variable names but can be expressions.
#
# as_facets() is complex due to historical baggage but its main
# purpose is to create a facets spec from a formula: a + b ~ c + d
# creates a facets list with two components, each of which bundles two
# facetting variables.

as_facets_list <- function(x) {
  check_vars(x)
  if (is_quosures(x)) {
    x <- quos_auto_name(x)
    return(list(x))
  }

  # This needs to happen early because we might get a formula.
  # facet_grid() directly converted strings to a formula while
  # facet_wrap() called as.quoted(). Hence this is a little more
  # complicated for backward compatibility.
  if (is_string(x)) {
    x <- parse_expr(x)
  }

  # At this level formulas are coerced to lists of lists for backward
  # compatibility with facet_grid(). The LHS and RHS are treated as
  # distinct facet dimensions and `+` defines multiple facet variables
  # inside each dimension.
  if (is_formula(x)) {
    if (length(x) == 2) {
      rows <- f_as_facets(NULL)
      cols <- f_as_facets(x)
    } else {
      rows <- f_as_facets(x[-3])
      cols <- f_as_facets(x[-2])
    }
    return(list(rows, cols))
  }

  # For backward-compatibility with facet_wrap()
  if (!is_bare_list(x)) {
    x <- as_quoted(x)
  }

  # If we have a list there are two possibilities. We may already have
  # a proper facet spec structure. Otherwise we coerce each element
  # with as_quoted() for backward compatibility with facet_grid().
  if (is.list(x)) {
    x <- lapply(x, as_facets)
  }

  x
}

check_vars <- function(x) {
  if (is_mapping(x)) {
    cli::cli_abort("Please use {.fn vars} to supply facet variables.")
  }
  # Native pipe have higher precedence than + so any type of gg object can be
  # expected here, not just ggplot
  if (S7::S7_inherits(x, class_gg)) {
    cli::cli_abort(c(
      "Please use {.fn vars} to supply facet variables.",
      "i" = "Did you use {.code %>%} or {.code |>} instead of {.code +}?"
    ))
  }
  invisible()
}

# Flatten a list of quosures objects to a quosures object, and compact it
compact_facets <- function(x) {
  x <- as_facets_list(x)
  proxy   <- vec_proxy(x)
  is_list <- vapply(proxy, vec_is_list, logical(1))
  proxy[is_list]  <- lapply(proxy[is_list],  unclass)
  proxy[!is_list] <- lapply(proxy[!is_list], list)
  new <- list_unchop(proxy, ptype = list(), name_spec = "{outer}_{inner}")
  x <- vec_restore(new, x)

  null_or_missing <- vapply(x, function(x) quo_is_null(x) || quo_is_missing(x), logical(1))
  new_quosures(x[!null_or_missing])
}

# Compatibility with plyr::as.quoted()
as_quoted <- function(x) {
  if (is.character(x)) {
    if (length(x) > 1) {
      x <- paste(x, collapse = "; ")
    }
    return(parse_exprs(x))
  }
  if (is.null(x)) {
    return(list())
  }
  if (is_formula(x)) {
    return(simplify(x))
  }
  list(x)
}
# From plyr:::as.quoted.formula
simplify <- function(x) {
  if (length(x) == 2 && is_symbol(x[[1]], "~")) {
    return(simplify(x[[2]]))
  }
  if (length(x) < 3) {
    return(list(x))
  }
  op <- x[[1]]; a <- x[[2]]; b <- x[[3]]

  if (is_symbol(op, c("+", "*", "~"))) {
    c(simplify(a), simplify(b))
  } else if (is_symbol(op, "-")) {
    c(simplify(a), expr(-!!simplify(b)))
  } else {
    list(x)
  }
}

as_facets <- function(x) {
  is_facets <- is.list(x) && length(x) > 0 &&
    all(vapply(x, is_quosure, logical(1)))
  if (is_facets) {
    return(x)
  }

  if (is_formula(x)) {
    # Use different formula method because plyr's does not handle the
    # environment correctly.
    f_as_facets(x)
  } else {
    vars <- as_quoted(x)
    as_quosures(vars, globalenv(), named = TRUE)
  }
}
f_as_facets <- function(f) {
  if (is.null(f)) {
    return(as_quosures(list()))
  }

  env <- f_env(f) %||% globalenv()

  # as.quoted() handles `+` specifications
  vars <- simplify(f)

  # `.` in formulas is discarded
  vars <- vars[!vapply(vars, identical, logical(1), as.name("."))]

  as_quosures(vars, env, named = TRUE)
}

# When evaluating variables in a facet specification, we evaluate bare
# variables and expressions slightly differently. Bare variables should
# always succeed, even if the variable doesn't exist in the data frame:
# that makes it possible to repeat data across multiple factors. But
# when evaluating an expression, you want to see any errors. That does
# mean you can't have background data when faceting by an expression,
# but that seems like a reasonable tradeoff.
eval_facets <- function(facets, data, possible_columns = NULL) {
  vars <- compact(lapply(facets, eval_facet, data, possible_columns = possible_columns))
  data_frame0(!!!vars)
}
eval_facet <- function(facet, data, possible_columns = NULL) {
  # Treat the case when `facet` is a quosure of a symbol specifically
  # to issue a friendlier warning
  if (quo_is_symbol(facet)) {
    facet <- as.character(quo_get_expr(facet))

    if (facet %in% names(data)) {
      out <- data[[facet]]
    } else {
      out <- NULL
    }
    return(out)
  }

  # Key idea: use active bindings so that column names missing in this layer
  # but present in others raise a custom error
  env <- new_environment(data)
  missing_columns <- setdiff(possible_columns, names(data))
  undefined_error <- function(e) cli::cli_abort("", class = "ggplot2_missing_facet_var")
  bindings <- rep_named(missing_columns, list(undefined_error))
  env_bind_active(env, !!!bindings)

  # Create a data mask and install a data pronoun manually (see ?new_data_mask)
  mask <- new_data_mask(env)
  mask$.data <- as_data_pronoun(mask)

  try_fetch(
    eval_tidy(facet, mask),
    ggplot2_missing_facet_var = function(e) NULL
  )
}

layout_null <- function() {
  # PANEL needs to be a factor to be consistent with other facet types
  data_frame0(
    PANEL = factor(1),
    ROW = 1,
    COL = 1,
    SCALE_X = 1,
    SCALE_Y = 1,
    .size = 1L
  )
}

check_layout <- function(x) {
  if (all(c("PANEL", "SCALE_X", "SCALE_Y") %in% names(x))) {
    return()
  }

  cli::cli_abort("Facet layout has a bad format. It must contain columns {.col PANEL}, {.col SCALE_X}, and {.col SCALE_Y}.")
}

check_facet_vars <- function(..., name) {
  vars_names <- c(...)
  reserved_names <- c("PANEL", "ROW", "COL", "SCALE_X", "SCALE_Y")
  problems <- intersect(vars_names, reserved_names)
  if (length(problems) != 0) {
    cli::cli_abort(c(
      "{.val {problems}} {?is/are} not {?an/} allowed name{?/s} for faceting variables.",
      "i" = "Change the name of your data columns to not be {.or {.str {reserved_names}}}."
    ), call = call2(name))
  }
}

#' Get the maximal width/length of a list of grobs
#'
#' @param grobs A list of grobs
#' @param value_only Should the return value be a simple numeric vector giving
#' the maximum in cm
#'
#' @return The largest value. measured in cm as a unit object or a numeric
#' vector depending on `value_only`
#'
#' @keywords internal
#' @export
max_height <- function(grobs, value_only = FALSE) {
  height <- max(unlist(lapply(grobs, height_cm)))
  if (!value_only) height <- unit(height, "cm")
  height
}
#' @rdname max_height
#' @export
max_width <- function(grobs, value_only = FALSE) {
  width <- max(unlist(lapply(grobs, width_cm)))
  if (!value_only) width <- unit(width, "cm")
  width
}
#' Find panels in a gtable
#'
#' These functions help detect the placement of panels in a gtable, if they are
#' named with "panel" in the beginning. `find_panel()` returns the extend of
#' the panel area, while `panel_cols()` and `panel_rows()` returns the
#' columns and rows that contains panels respectively.
#'
#' @param table A gtable
#'
#' @return A data.frame with some or all of the columns t(op), r(ight),
#' b(ottom), and l(eft)
#'
#' @keywords internal
#' @export
find_panel <- function(table) {
  layout <- table$layout
  panels <- layout[grepl("^panel", layout$name), , drop = FALSE]

  data_frame0(
    t = min(.subset2(panels, "t")),
    r = max(.subset2(panels, "r")),
    b = max(.subset2(panels, "b")),
    l = min(.subset2(panels, "l")),
    .size = 1
  )
}
#' @rdname find_panel
#' @export
panel_cols <- function(table) {
  panels <- table$layout[grepl("^panel", table$layout$name), , drop = FALSE]
  unique0(panels[, c('l', 'r')])
}
#' @rdname find_panel
#' @export
panel_rows <- function(table) {
  panels <- table$layout[grepl("^panel", table$layout$name), , drop = FALSE]
  unique0(panels[, c('t', 'b')])
}
#' Take input data and define a mapping between faceting variables and ROW,
#' COL and PANEL keys
#'
#' @param data A list of data.frames, the first being the plot data and the
#' subsequent individual layer data
#' @param env The environment the vars should be evaluated in
#' @param vars A list of quoted symbols matching columns in data
#' @param drop should missing combinations/levels be dropped
#'
#' @return A data.frame with columns for PANEL, ROW, COL, and faceting vars
#'
#' @keywords internal
#' @export
combine_vars <- function(data, env = emptyenv(), vars = NULL, drop = TRUE) {
  possible_columns <- unique0(unlist(lapply(data, names)))
  if (length(vars) == 0) return(data_frame0())

  # For each layer, compute the facet values
  values <- compact(lapply(data, eval_facets, facets = vars, possible_columns = possible_columns))

  # Form the base data.frame which contains all combinations of faceting
  # variables that appear in the data
  has_all <- unlist(lapply(values, length)) == length(vars)
  if (!any(has_all)) {
    missing <- lapply(values, function(x) setdiff(names(vars), names(x)))
    missing_vars <- paste0(
      c("Plot", paste0("Layer ", seq_len(length(data) - 1))),
      " is missing {.var ", missing[seq_along(data)], "}"
    )
    names(missing_vars) <- rep("x", length(data))

    cli::cli_abort(c(
      "At least one layer must contain all faceting variables: {.var {names(vars)}}",
      missing_vars
    ))
  }

  base <- unique0(vec_rbind0(!!!values[has_all]))
  if (!drop) {
    base <- unique_combs(base)
  }

  # Systematically add on missing combinations
  for (value in values[!has_all]) {
    if (empty(value)) next;

    old <- base[setdiff(names(base), names(value))]
    new <- unique0(value[intersect(names(base), names(value))])
    if (drop) {
      new <- unique_combs(new)
    }
    base <- unique0(vec_rbind0(base, df.grid(old, new)))
  }

  if (empty(base)) {
    cli::cli_abort("Faceting variables must have at least one value.")
  }

  base
}
#' Render panel axes
#'
#' These helpers facilitates generating theme compliant axes when
#' building up the plot.
#'
#' @param x,y A list of ranges as available to the draw_panel method in
#' `Facet` subclasses.
#' @param coord A `Coord` object
#' @param theme A `theme` object
#' @param transpose Should the output be transposed?
#'
#' @return A list with the element "x" and "y" each containing axis
#' specifications for the ranges passed in. Each axis specification is a list
#' with a "top" and "bottom" element for x-axes and "left" and "right" element
#' for y-axis, holding the respective axis grobs. Depending on the content of x
#' and y some of the grobs might be zeroGrobs. If `transpose=TRUE` the
#' content of the x and y elements will be transposed so e.g. all left-axes are
#' collected in a left element as a list of grobs.
#'
#' @keywords internal
#' @export
#'
render_axes <- function(x = NULL, y = NULL, coord, theme, transpose = FALSE) {
  axes <- list()
  if (!is.null(x)) {
    axes$x <- lapply(x, coord$render_axis_h, theme)
  }
  if (!is.null(y)) {
    axes$y <- lapply(y, coord$render_axis_v, theme)
  }
  if (transpose) {
    axes <- list(
      x = list(
        top = lapply(axes$x, `[[`, "top"),
        bottom = lapply(axes$x, `[[`, "bottom")
      ),
      y = list(
        left = lapply(axes$y, `[[`, "left"),
        right = lapply(axes$y, `[[`, "right")
      )
    )
  }
  axes
}
#' Render panel strips
#'
#' All positions are rendered and it is up to the facet to decide which to use
#'
#' @param x,y A data.frame with a column for each variable and a row for each
#' combination to draw
#' @param labeller A labeller function
#' @param theme a `theme` object
#'
#' @return A list with an "x" and a "y" element, each containing a "top" and
#' "bottom" or "left" and "right" element respectively. These contains a list of
#' rendered strips as gtables.
#'
#' @keywords internal
#' @export
render_strips <- function(x = NULL, y = NULL, labeller = identity, theme) {
  list(
    x = build_strip(x, labeller, theme, TRUE),
    y = build_strip(y, labeller, theme, FALSE)
  )
}


censor_labels <- function(ranges, layout, labels) {
  if (labels$x && labels$y) {
    return(ranges)
  }
  draw <- matrix(
    TRUE, length(ranges), 4,
    dimnames = list(NULL, c("top", "bottom", "left", "right"))
  )

  if (!labels$x) {
    xmax <- stats::ave(layout$ROW, layout$COL, FUN = max)
    xmin <- stats::ave(layout$ROW, layout$COL, FUN = min)
    draw[which(layout$ROW != xmax), "bottom"] <- FALSE
    draw[which(layout$ROW != xmin), "top"] <- FALSE
  }
  if (!labels$y) {
    ymax <- stats::ave(layout$COL, layout$ROW, FUN = max)
    ymin <- stats::ave(layout$COL, layout$ROW, FUN = min)
    draw[which(layout$COL != ymax), "right"] <- FALSE
    draw[which(layout$COL != ymin), "left"] <- FALSE
  }
  for (i in seq_along(ranges)) {
    ranges[[i]]$draw_labels <- as.list(draw[i, ])
  }
  ranges
}

map_facet_data <- function(data, layout, params) {

  if (empty(data)) {
    return(vec_cbind(data %|W|% NULL, PANEL = integer(0)))
  }

  vars <- params$facets %||% c(params$rows, params$cols)

  if (length(vars) == 0) {
    data$PANEL <- layout$PANEL
    return(data)
  }

  grid_layout <- all(c("rows", "cols") %in% names(params))
  layer_layout <- attr(data, "layout")
  if (identical(layer_layout, "fixed")) {
    n <- vec_size(data)
    data <- vec_rep(data, vec_size(layout))
    data$PANEL <- vec_rep_each(layout$PANEL, n)
    return(data)
  }

  # Compute faceting values
  facet_vals <- eval_facets(vars, data, params$.possible_columns)

  include_margins <- !isFALSE(params$margins %||% FALSE) &&
    nrow(facet_vals) == nrow(data) && grid_layout
  if (include_margins) {
    # Margins are computed on evaluated faceting values (#1864).
    facet_vals <- reshape_add_margins(
      vec_cbind(facet_vals, .index = seq_len(nrow(facet_vals))),
      list(intersect(names(params$rows), names(facet_vals)),
           intersect(names(params$cols), names(facet_vals))),
      params$margins %||% FALSE
    )
    # Apply recycling on original data to fit margins
    # We're using base subsetting here because `data` might have a superclass
    # that isn't handled well by vctrs::vec_slice
    data <- data[facet_vals$.index, , drop = FALSE]
    facet_vals$.index <- NULL
  }

  # If we need to fix rows or columns, we make the corresponding faceting
  # variables missing on purpose
  if (grid_layout) {
    if (identical(layer_layout, "fixed_rows")) {
      facet_vals <- facet_vals[setdiff(names(facet_vals), names(params$cols))]
    }
    if (identical(layer_layout, "fixed_cols")) {
      facet_vals <- facet_vals[setdiff(names(facet_vals), names(params$rows))]
    }
  }

  # If any faceting variables are missing, add them in by
  # duplicating the data
  missing_facets <- setdiff(names(vars), names(facet_vals))
  if (length(missing_facets) > 0) {

    to_add <- unique0(layout[missing_facets])

    data_rep  <- rep.int(seq_len(nrow(data)), nrow(to_add))
    facet_rep <- rep(seq_len(nrow(to_add)), each = nrow(data))

    data <- unrowname(data[data_rep, , drop = FALSE])
    facet_vals <- unrowname(vec_cbind(
      unrowname(facet_vals[data_rep, , drop = FALSE]),
      unrowname(to_add[facet_rep, , drop = FALSE])
    ))
  }

  if (nrow(facet_vals) < 1) {
    # Add PANEL variable
    data$PANEL <- NO_PANEL
    return(data)
  }

  facet_vals[] <- lapply(facet_vals, as_unordered_factor)
  facet_vals[] <- lapply(facet_vals, addNA, ifany = TRUE)
  layout[] <- lapply(layout, as_unordered_factor)

  # Add PANEL variable
  keys <- join_keys(facet_vals, layout, by = names(vars))
  data$PANEL <- layout$PANEL[match(keys$x, keys$y)]

  # Filter panels when layer_layout is an integer
  if (is_integerish(layer_layout)) {
    data <- vec_slice(data, data$PANEL %in% layer_layout)
  }

  data
}

Try the ggplot2 package in your browser

Any scripts or data that you put into this service are public.

ggplot2 documentation built on Sept. 11, 2025, 9:10 a.m.