R/02-gimap_filter.R

Defines functions gimap_filter

Documented in gimap_filter

#' A function to run filtering
#' @description This function applies filters to the gimap data. By default it
#' runs both the zero count (across all samples) and the low plasmid cpm
#' filters, but users can select a subset of these filters or even adjust the
#' behavior of each filter
#' @param .data Data can be piped in with tidyverse pipes from function to
#' function. But the data must still be a gimap_dataset
#' @param gimap_dataset A special dataset structure that is setup using the
#' `setup_data()` function.
#' @param filter_type Can be one of the following: `zero_count_only`,
#' `low_plasmid_cpm_only` or `both`.
#' Potentially in the future also `rep_variation`, `zero_in_last_time_point`
#'  or a vector that includes multiple of these filters.
#' @param filter_zerocount_target_col default is NULL; Which sample column(s)
#' should be used to check for counts of 0? If NULL and not specified,
#' downstream analysis will select all sample columns
#' @param filter_plasmid_target_col default is NULL, and if NULL, will select
#' the first column only; this parameter specifically should be used to specify
#' the plasmid column(s) that will be selected
#' @param filter_replicates_target_col default is NULL, Which sample columns
#' are the final time point replicates; If NULL, the last 3 sample columns are
#' used. This is only used by this function to save a list of which pgRNA IDs
#' have a zero count for all of these samples.
#' @param cutoff default is NULL, relates to the low_plasmid_cpm filter; the
#' cutoff for low log2 CPM values for the plasmid time period; if not specified,
#' The lower outlier (defined by taking the difference of the lower quartile and
#'  1.5 * interquartile range) is used
#' @param min_n_filters default is 1; this parameter defines at least
#' how many/the minimum number of independent filters have to flag a pgRNA
#' construct before the construct is filtered when using a combination of
#' filters You should decide on the appropriate filter based on the results of
#' your QC report.
#' @importFrom purrr reduce
#' @returns a filtered version of the gimap_dataset returned in the
#' $filtered_data section filter_step_run is a boolean reporting if the filter
#' step was run or not (since it's optional)
#' metadata_pg_ids is a subset the pgRNA IDs such that these are the ones that
#' remain in the dataset following completion of filtering
#' transformed_log2_cpm is a subset the log2_cpm data such that these are the
#' ones that remain in the dataset following completion of filtering
#' removed_pg_ids is a record of which pgRNAs are filtered out once filtering
#' is complete
#' all_reps_zerocount_ids is not actually filtered data necessarily.
#' Instead it's just a record of which pgRNAs have a zero count in all final
#' timepoint replicates
#' @export
#' @import dplyr
#' @examples \donttest{
#'
#' gimap_dataset <- get_example_data("gimap", data_dir = tempdir()) %>%
#'   gimap_filter()
#'
#' # To see filtered data
#' # gimap_dataset$filtered_data
#'
#' # If you want to only use a single filter or some subset,
#' # specify which using the filter_type parameter
#' gimap_dataset <- get_example_data("gimap") %>%
#'   gimap_filter(filter_type = "zero_count_only")
#' # or
#' gimap_dataset <- get_example_data("gimap") %>%
#'   gimap_filter(filter_type = "low_plasmid_cpm_only")
#'
#' # If you want to use multiple filters and more than one to flag a pgRNA
#' # construct before it's filtered out, use the `min_n_filters` argument
#' gimap_dataset <- get_example_data("gimap") %>%
#'   gimap_filter(
#'     filter_type = "both",
#'     min_n_filters = 2
#'   )
#'
#' # You can also specify which columns the filters will be applied to
#' gimap_dataset <- get_example_data("gimap") %>%
#'   gimap_filter(
#'     filter_type = "zero_count_only",
#'     filter_zerocount_target_col = c(1, 2)
#'   )
#' }
gimap_filter <- function(.data = NULL,
                         gimap_dataset,
                         filter_type = "both",
                         cutoff = NULL,
                         filter_zerocount_target_col = NULL,
                         filter_plasmid_target_col = NULL,
                         filter_replicates_target_col = NULL,
                         min_n_filters = 1) {
  if (!is.null(.data)) gimap_dataset <- .data

  if (!("gimap_dataset" %in% class(gimap_dataset))) {
    stop(
      "This function only works with gimap_dataset objects ",
      "which can be made with the setup_data() function."
    )
  }

  # check filter type input to make sure that it is a supportable input
  if (!(filter_type %in%
    c("both", "zero_count_only", "low_plasmid_cpm_only"))) {
    stop(
      "Specification for `filter_type` not understood;",
      "Need to use 'both', 'zero_count_only', or 'low_plasmid_cpm_only'"
    )
  }

  filter_call <- switch(filter_type,
    "both" = "both",
    "zero_count_only" = "zc_filter",
    "low_plasmid_cpm_only" = "p_filter"
  )

  filter_df <-
    data.frame(
      zc_filter = qc_filter_zerocounts(
        gimap_dataset,
        filter_zerocount_target_col = filter_zerocount_target_col
      )$filter,
      p_filter = qc_filter_plasmid(
        gimap_dataset,
        cutoff = cutoff,
        filter_plasmid_target_col = filter_plasmid_target_col
      )$filter$plasmid_cpm_filter
    ) %>%
    dplyr::mutate(both = rowSums(.) >= min_n_filters)

  ## The final call is based on what they specify
  final_call <- filter_df %>%
    dplyr::pull(filter_call)

  # store some data/results from filtering
  ## adding a way to know if the filter step was run since it's optional
  gimap_dataset$filtered_data$filter_step_run <- TRUE

  ## subset the pgRNA IDs such that these are the ones that remain in the
  ## dataset following completion of filtering
  gimap_dataset$filtered_data$metadata_pg_ids <-
    gimap_dataset$metadata$pg_ids[!final_call, ]

  ## subset the log2_cpm data such that these are the ones that remain in the
  # dataset following completion of filtering
  gimap_dataset$filtered_data$transformed_log2_cpm <-
    gimap_dataset$transformed_data$log2_cpm[!final_call, ]

  ## save a list of which pgRNAs are filtered out once filtering is complete
  gimap_dataset$filtered_data$removed_pg_ids <- cbind(
    gimap_dataset$metadata$pg_ids[final_call, ],
    filter_df[final_call, ]
  )

  gimap_dataset$filtered_data$removed_pg_ids <-
    gimap_dataset$filtered_data$removed_pg_ids %>%
    # add the IDs as a column together with the TRUEs and FALSEs for each
    # filter, focusing only on pgRNAs which are in some way flagged for removal
    pivot_longer(c(-id, -both),
      # pivot longer so that IDs are repeated and filter names are listed in a
      # column and the last column (`boolVals`) are TRUEs and FALSEs
      names_to = "filter_name",
      values_to = "bool_vals"
    ) %>%
    # drop rows where boolVals is false, so this leaves only filters that
    # flagged a pgRNA for removal
    filter(bool_vals == TRUE) %>%
    # drop the boolVals column because don't need it anymore
    select(id, filter_name) %>%
    # group by the pgRNA constructs
    group_by(id) %>%
    # and make a column that comma separates the relevant filters
    summarize(relevantFilters = toString(filter_name))

  ## save a list of which pgRNAs have a zero count in all final timepoint
  ## replicates.
  # NOTE these are NOT necessarily filtered out
  if (is.null(filter_replicates_target_col)) {
    filter_replicates_target_col <-
      c((ncol(gimap_dataset$transformed_data$log2_cpm) - 2
      ):ncol(gimap_dataset$transformed_data$log2_cpm))
  } # last 3 columns of the data

  gimap_dataset$filtered_data$all_reps_zerocount_ids <-
    gimap_dataset$metadata$pg_ids[
      unlist(
        # grab the data from the final timepoint replicate columns
        gimap_dataset$raw_counts[, filter_replicates_target_col] %>%
          as.data.frame() %>%
          mutate(row = row_number()) %>% # add a row number column for reference
          # Use pivot longer to put the sample names of the samples in a `name`
          # column
          tidyr::pivot_longer(
            colnames(gimap_dataset$raw_counts)[filter_replicates_target_col],
            values_to = "counts"
          ) %>% # and the corresponding values in a `counts` column
          group_by(row) %>% # group by the row index/reference
          # summarize the number of replicates that have a count of 0 for each
          # row/pgRNA construct
          summarize(numzero = sum(counts == 0)) %>%
          # filter to include only pgRNA constructs that have a zero count for
          # all replicates
          filter(numzero == length(filter_replicates_target_col)) %>%
          select(row) # select the rows column so we can grab the corresponding
        # pgRNA IDs
      ) # unlist the tibble
      ,
    ] # subselect just the IDs and store

  return(gimap_dataset)
}

#' Filter out samples of zero counts
#' Create a filter for pgRNAs which have a raw count of 0 for any sample/time
#' # point
#' @description This function flags and reports which and how many pgRNAs have a
#' raw count of 0 for any sample/time point
#' @param gimap_dataset The special gimap_dataset from the `setup_data` function
#' which contains the raw count data
#' @param filter_zerocount_target_col default is NULL; Which sample column(s)
#' should be used to check for counts of 0? If NULL and not specified,
#' downstream analysis will select all sample columns
#' @importFrom magrittr %>%
#' @importFrom dplyr mutate
#' @importFrom purrr reduce map
#' @return a named list with the filter `filter` specifying which pgRNA have a
#' count zero for at least one sample/time point and a report df `reportdf` for
#' the number and percent of pgRNA which have a count zero for at least one
#' sample/time point
#' @examples \donttest{
#' gimap_dataset <- get_example_data("gimap", data_dir = tempdir())
#' qc_filter_zerocounts(gimap_dataset)
#'
#' # or to specify a different column (or set of columns to select)
#' qc_filter_zerocounts(gimap_dataset, filter_zerocount_target_col = 1:2)
#' }
#' @export
qc_filter_zerocounts <- function(gimap_dataset,
                                 filter_zerocount_target_col = NULL) {
  if (is.null(filter_zerocount_target_col)) {
    filter_zerocount_target_col <- c(1:ncol(gimap_dataset$raw_counts))
  }

  if (!all(filter_zerocount_target_col %in% 1:ncol(gimap_dataset$raw_counts))) {
    stop(
      "The columns selected do not exist. `filter_zerocount_target_col`
         needs to correspond to the index of the columns in",
      "`gimap_dataset$raw_counts` that you need to filter by"
    )
  }

  counts_filter <-
    data.frame(gimap_dataset$raw_counts[, filter_zerocount_target_col]) %>%
    map(~ .x %in% c(0)) %>%
    reduce(`|`)

  zerocount_df <- data.frame(
    "RawCount0" = c(FALSE, TRUE),
    n = c(sum(!counts_filter), sum(counts_filter))
  ) %>%
    mutate(percent = round(((n / sum(n)) * 100), 2))

  return(list(
    filter = counts_filter,
    reportdf = zerocount_df
  ))
}

#' Create a filter for pgRNAs which have a low log2 CPM value for the
#' plasmid/Day 0 sample/time point
#' @description This function flags and reports which and how many pgRNAs have
#' low log2 CPM values for the plasmid/Day 0 sample/time point. If more than one
#' column is specified as the plasmid sample,
#' we pool all the replicate samples to find the lower outlier and flag
#' constructs for which any plasmid replicate has a log2 CPM value below the
#' cutoff
#' @param gimap_dataset The special gimap_dataset from the `setup_data` function
#' which contains the log2 CPM transformed data
#' @param cutoff default is NULL, the cutoff for low log2 CPM values for the
#' plasmid time period; if not specified, The lower outlier (defined by taking
#' the difference of the lower quartile and 1.5 * interquartile range) is used
#' @param filter_plasmid_target_col default is NULL, and if NULL, will select
#' the first column only; this parameter specifically should be used to specify
#' the plasmid column(s) that will be selected
#' @importFrom magrittr %>%
#' @importFrom dplyr mutate across if_any
#' @importFrom tidyr pivot_wider pivot_longer
#' @importFrom janitor clean_names
#' @importFrom stats quantile
#' @export
#' @return a named list with the filter `filter` specifying which pgRNAs have
#' low plasmid log2 CPM (column of interest is `plasmid_cpm_filter`) and a
#' report df `reportdf` for the number and percent of pgRNA which have a low
#' plasmid log2 CPM
#' @examples \donttest{
#' gimap_dataset <- get_example_data("gimap", data_dir = tempdir())
#'
#' qc_filter_plasmid(gimap_dataset)
#'
#' # or to specify a cutoff value to be used in the filter rather than the lower
#' # outlier default
#' qc_filter_plasmid(gimap_dataset, cutoff = 2)
#'
#' # or to specify a different column (or set of columns to select)
#' qc_filter_plasmid(gimap_dataset, filter_plasmid_target_col = 1:2)
#'
#' # or to specify a cutoff value that will be used in the filter rather than
#' # the lower outlier default as well as to specify a different column (or set
#' # of columns) to select
#' qc_filter_plasmid(gimap_dataset,
#'   cutoff = 1.75,
#'   filter_plasmid_target_col = 1:2
#' )
#' }
#'
qc_filter_plasmid <- function(gimap_dataset,
                              cutoff = NULL,
                              filter_plasmid_target_col = NULL) {
  if (is.null(filter_plasmid_target_col)) {
    filter_plasmid_target_col <- c(1)
  }

  if (!all(filter_plasmid_target_col %in%
    1:ncol(gimap_dataset$transformed_data$log2_cpm))) {
    stop(
      "The columns selected do not exist. `filter_plasmid_target_col` needs",
      "to correspond to the index of the columns in",
      "`gimap_dataset$transformed_data$log2_cpm` that you need to filter by"
    )
  }

  plasmid_data <-
    data.frame(
      gimap_dataset$transformed_data$log2_cpm[, filter_plasmid_target_col]
    ) %>%
    `colnames<-`(rep(
      c("plasmid_log2_cpm"),
      length(filter_plasmid_target_col)
    )) %>%
    clean_names()

  if (length(filter_plasmid_target_col > 1)) {
    # if more than one column was selected, collapse all of the columns into
    # the same vector using pivot_longer to store in a df with the name of the
    # rep and number for row/construct
    plasmid_data <- plasmid_data %>%
      mutate(construct = rownames(plasmid_data)) %>%
      pivot_longer(starts_with("plasmid_log2_cpm"),
        values_to = "plasmid_log2_cpm",
        names_to = "rep"
      )
  }

  if (is.null(cutoff)) {
    # if cutoff is null, use lower outlier
    quantile_info <- quantile(plasmid_data$plasmid_log2_cpm)

    cutoff <- quantile_info["25%"] -
      (1.5 * (quantile_info["75%"] - quantile_info["25%"]))
    # later step make a function for this in utils since
    # it's used more than once
  }

  if (length(filter_plasmid_target_col > 1)) {
    # if more than one column was selected, take collapsed/pooled data and
    # compare it to the cutoff
    # then pivot_wider so that the constructs are in the same row and we can use
    # if_any to report if any of the replicates were flagged by the cutoff
    # return just that summary column (reporting if any are TRUE) as the filter
    plasmid_data <- plasmid_data %>%
      mutate(filterFlag = plasmid_log2_cpm < cutoff) %>%
      pivot_wider(
        id_cols = construct, names_from = rep,
        values_from = filterFlag
      )
    plasmid_cpm_filter <- plasmid_data %>%
      mutate(plasmid_cpm_filter = if_any(
        .cols = starts_with("plasmid_log2_cpm")
      )) %>%
      select(plasmid_cpm_filter)
  } else {
    plasmid_cpm_filter <-
      as.data.frame(plasmid_data$plasmid_log2_cpm < cutoff) %>%
      `colnames<-`("plasmid_cpm_filter")
  }

  plasmid_filter_df <- data.frame(
    "Plasmid_log2cpmBelowCutoff" = c(FALSE, TRUE),
    n = c(sum(!plasmid_cpm_filter), sum(plasmid_cpm_filter))
  ) %>%
    mutate(percent = round(((n / sum(n)) * 100), 2))
  # later step make a function for this in utils since it's used more than once

  return(list(
    filter = plasmid_cpm_filter,
    reportdf = plasmid_filter_df
  ))
}

Try the gimap package in your browser

Any scripts or data that you put into this service are public.

gimap documentation built on June 8, 2025, 10:13 a.m.