Nothing
#'@title Anomaly Detector using FFT with BinSeg and CUSUM Cutoff
#'@description
#'This function implements an anomaly detection method that combines the Fast Fourier Transform (FFT)
#'with a changepoint-based cutoff strategy using the Binary Segmentation (BinSeg) method applied
#'to the cumulative sum (CUSUM) of the frequency spectrum.
#'
#'The method first computes the FFT of the input time series and obtains its power spectrum.
#'Then, it applies a CUSUM transformation to the spectral density to enhance detection of gradual
#'transitions or accumulated changes in energy across frequencies. The Binary Segmentation method
#'is applied to the CUSUM-transformed spectrum to identify a changepoint that defines a cutoff
#'frequency.
#'
#'Frequencies below this cutoff are removed from the spectrum, and the signal is reconstructed
#'using the inverse FFT. This produces a filtered signal that retains only the high-frequency
#'components, emphasizing potential anomalies.
#'
#'Anomalies are then detected by measuring the deviation of the filtered signal from the original one,
#'and applying an outlier detection mechanism based on this residual.
#'
#'This function extends the HARBINGER framework and returns an object of class `hanr_fft_binseg_cusum`.
#'
#'
#'@return `hanr_fft_binseg_cusum` object
#'
#'@examples
#'library(daltoolbox)
#'
#'#loading the example database
#'data(examples_anomalies)
#'
#'#Using simple example
#'dataset <- examples_anomalies$simple
#'head(dataset)
#'
#'# setting up time series fft detector
#'model <- hanr_fft_binseg_cusum()
#'
#'# fitting the model
#'model <- fit(model, dataset$serie)
#'
# making detection
#'detection <- detect(model, dataset$serie)
#'
#'# filtering detected events
#'print(detection[(detection$event),])
#'
#'@export
hanr_fft_binseg_cusum <- function() {
obj <- harbinger()
obj$sw_size <- NULL
hutils <- harutils()
obj$har_outliers_check <- hutils$har_outliers_checks_highgroup
class(obj) <- append("hanr_fft_binseg_cusum", class(obj))
return(obj)
}
#'@importFrom stats fft
#'@importFrom stats sd
#'@importFrom changepoint cpt.mean
#'@importFrom changepoint cpts
#'@exportS3Method detect hanr_fft_binseg_cusum
detect.hanr_fft_binseg_cusum <- function(obj, serie, ...) {
compute_cut_index <- function(freqs) {
cusum_valores <- cumsum(freqs)
resultado_cpt <- changepoint::cpt.mean(cusum_valores, method="BinSeg")
i <- length(changepoint::cpts(resultado_cpt))
cutindex <- changepoint::cpts(resultado_cpt)[i]
return(cutindex)
}
if(is.null(serie)) stop("No data was provided for computation", call. = FALSE)
obj <- obj$har_store_refs(obj, serie)
fft_signal <- stats::fft(obj$serie)
spectrum <- base::Mod(fft_signal)^2
half_spectrum <- spectrum[1:(length(obj$serie)/2 + 1)]
cutindex <- compute_cut_index(half_spectrum)
n <- length(fft_signal)
fft_signal[1:cutindex] <- 0
fft_signal[(n - cutindex):n] <- 0
filtered_series <- base::Re(stats::fft(fft_signal, inverse = TRUE) / n)
res <- obj$har_distance(filtered_series)
anomalies <- obj$har_outliers(res)
anomalies <- obj$har_outliers_check(anomalies, res)
detection <- obj$har_restore_refs(obj, anomalies = anomalies, res = res)
return(detection)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.