Nothing
is_matrix_or_df <- function(obj) {
is.matrix(obj) || is.data.frame(obj)
}
har_distance_l1 <- function(values) {
values <- abs(values)
if (is_matrix_or_df(values))
values <-rowSums(values)
return(values)
}
har_distance_l2 <- function(values) {
values <- values^2
if (is_matrix_or_df(values))
values <-rowSums(values)
return(values)
}
har_outliers_boxplot <- function(res){
org = length(res)
cond <- rep(FALSE, org)
q <- stats::quantile(res, na.rm=TRUE)
IQR <- q[4] - q[2]
thresholdInf <- as.double(q[2] - 1.5*IQR)
thresholdSup <- as.double(q[4] + 1.5*IQR)
index = which(res > thresholdSup | res < thresholdInf)
attr(index, "threshold") <- c(thresholdInf, thresholdSup)
return (index)
}
har_outliers_gaussian <- function(res){
thresholdSup <- mean(res) + 3*sd(res)
thresholdInf <- mean(res) - 3*sd(res)
index <- which(res > thresholdSup | res < thresholdInf)
attr(index, "threshold") <- c(thresholdInf, thresholdSup)
return (index)
}
har_outliers_ratio <- function(res){
ratio <- 1 - res / max(res)
thresholdSup <- mean(ratio) + 3*sd(ratio)
thresholdSup <- (thresholdSup - 1) * max(res)
thresholdInf <- mean(ratio) - 3*sd(ratio)
thresholdInf <- (thresholdInf - 1) * max(res)
index <- which(res > thresholdSup | res < thresholdInf)
attr(index, "threshold") <- c(thresholdInf, thresholdSup)
return (index)
}
har_outliers_checks_firstgroup <- function(outliers, values) {
threshold <- attr(outliers, "threshold")
values <- abs(values)
if (is_matrix_or_df(values))
values <-rowSums(values)
size <- length(values)
group <- split(outliers, cumsum(c(1, diff(outliers) != 1)))
outliers <- rep(FALSE, size)
for (g in group) {
if (length(g) > 0) {
i <- min(g)
outliers[i] <- TRUE
}
}
attr(outliers, "threshold") <- threshold
return(outliers)
}
har_outliers_checks_highgroup <- function(outliers, values) {
threshold <- attr(outliers, "threshold")
values <- abs(values)
if (is_matrix_or_df(values))
values <-rowSums(values)
size <- length(values)
group <- split(outliers, cumsum(c(1, diff(outliers) != 1)))
outliers <- rep(FALSE, size)
for (g in group) {
if (length(g) > 0) {
i <- which.max(values[g])
i <- g[i]
outliers[i] <- TRUE
}
}
attr(outliers, "threshold") <- threshold
return(outliers)
}
har_fuzzify_detections_triangle <- function(value, tolerance) {
type <- attr(value, "type")
value <- as.double(value)
if (!tolerance) {
attr(value, "type") <- type
return(value)
}
idx <- which(value >= 1)
n <- length(value)
ratio <- 1/tolerance
range <- tolerance-1
for (i in idx) {
curtype <- ""
if (!is.null(type))
curtype <- type[i]
for (j in 1:range) {
if (i + j < n) {
value[i+j] <- value[i+j] + (tolerance - j)*ratio
type[i+j] <- curtype
}
if (i - j > 0) {
value[i-j] <- value[i-j] + (tolerance - j)*ratio
type[i-j] <- curtype
}
}
}
attr(value, "type") <- type
return(value)
}
#'@title Harbinger Utils
#'@description Utility class that contains major distance measures,
#'threshold limits, and outliers grouping functions
#'@return Harbinger Utils
#'@examples
#'# See ?hanc_ml for an example of anomaly detection using machine learning classification
#'@importFrom daltoolbox dal_base
#'@importFrom stats quantile
#'@export
harutils <- function() {
obj <- dal_base()
class(obj) <- append("harutils", class(obj))
obj$har_distance_l1 <- har_distance_l1
obj$har_distance_l2 <- har_distance_l2
obj$har_outliers_boxplot <- har_outliers_boxplot
obj$har_outliers_gaussian <- har_outliers_gaussian
obj$har_outliers_ratio <- har_outliers_ratio
obj$har_outliers_checks_firstgroup <- har_outliers_checks_firstgroup
obj$har_outliers_checks_highgroup <- har_outliers_checks_highgroup
obj$har_fuzzify_detections_triangle <- har_fuzzify_detections_triangle
return(obj)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.