Nothing
#'@title Anomaly and change point detector using RED
#'@description Anomaly and change point detection using RED
#'The RED model adjusts to the time series. Observations distant from the model are labeled as anomalies.
#'It wraps the EMD model presented in the hht library.
#'@param sw_size sliding window size (default 30)
#'@param noise noise
#'@param trials trials
#'@return `hanr_red` object
#'@examples
#'library(daltoolbox)
#'library(zoo)
#'
#'#loading the example database
#'data(examples_anomalies)
#'
#'#Using simple example
#'dataset <- examples_anomalies$simple
#'head(dataset)
#'
#'# setting up time series emd detector
#'model <- hanr_red()
#'
#'# fitting the model
#'model <- fit(model, dataset$serie)
#'
# making detection
#'detection <- detect(model, dataset$serie)
#'
#'# filtering detected events
#'print(detection[(detection$event),])
#'
#'@export
hanr_red <- function(sw_size = 30, noise = 0.001, trials = 5) {
obj <- harbinger()
obj$sw_size <- sw_size
obj$noise <- noise
obj$trials <- trials
class(obj) <- append("hanr_red", class(obj))
return(obj)
}
## Roughness function
#'@importFrom stats sd
fc <- function(x){
firstD = base::diff(x)
normFirstD = (firstD - base::mean(firstD)) / stats::sd(firstD)
roughness = (base::diff(normFirstD) ** 2) / 4
return(base::mean(roughness))
}
## Function that sums the IMFs given an initial and final IMF.
fc_sumIMF <- function(ceemd.result, start, end){
soma_imf <- base::rep(0, length(ceemd.result[["original.signal"]]))
for (k in start:end){
soma_imf <- soma_imf + ceemd.result[["imf"]][,k]
}
return(soma_imf)
}
## Function that calculates the central point of the sequences.
median_point <- function(cp){
group_outliers <- base::split(cp, base::cumsum(c(1, base::diff(cp) != 1)))
cp <- base::rep(FALSE, length(cp))
# removes the central point from the sequences
for (g in group_outliers) {
if (length(g) > 0) {
j <- stats::median(g)
cp[j] <- TRUE
}
}
i_cp <- base::which(cp, arr.ind = TRUE)
i_cp
}
#'@importFrom stats median
#'@importFrom stats sd
#'@importFrom hht CEEMD
#'@importFrom zoo rollapply
#'@importFrom daltoolbox transform
#'@importFrom daltoolbox fit_curvature_max
#'@export
detect.hanr_red <- function(obj, serie, ...) {
if (is.null(serie))
stop("No data was provided for computation", call. = FALSE)
obj <- obj$har_store_refs(obj, serie)
id <- 1:length(obj$serie)
san_size <- length(obj$serie)
## calculate IMFs
suppressWarnings(ceemd.result <- hht::CEEMD(obj$serie, id, verbose = FALSE, obj$noise, obj$trials))
obj$model_an <- ceemd.result
## create accumulate IMFs vector
cum.vec <- list()
for (n in 1:obj$model_an$nimf){
cum.vec[[n]] <- fc_sumIMF(obj$model_an, 1, n)
}
## calculate roughness for each imf
vec <- vector()
for (n in 1:length(cum.vec)){
vec[n] <- fc(cum.vec[[n]])
}
div <- 1
if (length(cum.vec) > 1) {
## Maximum curvature
res <- daltoolbox::transform(daltoolbox::fit_curvature_max(), vec)
div <- res$x
}
## ANOMALY ##
## adding the IMFs with the highest variance
sum_an <- fc_sumIMF(obj$model_an, 1, div) # for AN
# Creates the differential of the sum_an
sum_diff <- c(NA, diff(sum_an)) #NA in the first value to maintain the length of the series
## Calculates the standard deviation of the central point.
sd <- zoo::rollapply(obj$serie, obj$sw_size, sd, by = 1)
sd <- c(rep(NA,14), sd, rep(NA,15)) #filling the borders with NA.
## Creating anomaly vector.
anoms <- sum_diff/sd
## determining outliers according to criterion 2.698 x standard deviation.
outliers <- which(abs(anoms) > 2.698*sd(anoms, na.rm=TRUE))
# removing duplicate anomalies
# captures and stores all sequences
group_an <- split(outliers, cumsum(c(1, diff(outliers) != 1)))
an <- rep(FALSE, length(obj$serie))
## removes the first point from the sequences.
for (g in group_an) {
if (length(g) > 0) {
i <- min(g)
an[i] <- TRUE
}
}
i_an <- which(an, arr.ind = TRUE)
anomalies <- rep(FALSE, length(obj$serie))
if (!is.null(i_an) & length(i_an) > 0) {
anomalies[i_an] <- TRUE
}
detection <- obj$har_restore_refs(obj, anomalies = anomalies)
return(detection)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.