Nothing
######################################################################################################################################
######################################################################################################################################
### Adaptive Bootstrap MiSSE -- Simulating confidence intervals for parameters estimated in MiSSE
######################################################################################################################################
######################################################################################################################################
SupportRegionMiSSE <- function(misse.obj, n.points=1000, scale.int=0.1, desired.delta=2, min.number.points=10, verbose=TRUE){
#If no fossils should be fine, but necessary to call this tree if fossils are present:
phy <- misse.obj$phy.w.k
f <- misse.obj$f
np <- max(misse.obj$index.par) - 1
par <- numeric(np)
free.parameters <- which(misse.obj$index.par < max(misse.obj$index.par))
np.sequence <- 1:np
for(i in np.sequence){
par[i] <- misse.obj$solution[which(misse.obj$index.par == np.sequence[i])[1]]
}
hidden.states=misse.obj$hidden.states
condition.on.survival=misse.obj$condition.on.survival
root.type=misse.obj$root.type
root.p=misse.obj$root.p
includes.fossils = misse.obj$includes.fossils
fix.type = misse.obj$fix.type
strat.intervals = misse.obj$strat.intervals
lower <- exp(misse.obj$lower.bounds)
upper <- exp(misse.obj$upper.bounds)
#Bad Jeremy! Hard-coded column headers...
interval.names <- c("lnLik", "turnover0A","eps0A", "turnover0B","eps0B", "turnover0C","eps0C", "turnover0D","eps0D", "turnover0E","eps0E", "turnover0F","eps0F", "turnover0G","eps0G", "turnover0H","eps0H", "turnover0I","eps0I", "turnover0J","eps0J", "turnover0K","eps0K", "turnover0L","eps0L", "turnover0M","eps0M", "turnover0N","eps0N", "turnover0O","eps0O", "turnover0P","eps0P", "turnover0Q","eps0Q", "turnover0R","eps0R", "turnover0S","eps0S", "turnover0T","eps0T", "turnover0U","eps0U", "turnover0V","eps0V","turnover0W","eps0W","turnover0X","eps0X", "turnover0Y","eps0Y", "turnover0Z","eps0Z", "q0", "psi")
interval.results <- AdaptiveConfidenceIntervalSamplingMiSSE(par, lower=lower, upper=upper, desired.delta = desired.delta, n.points=n.points, verbose=verbose, phy=phy, index.par=misse.obj$index.par, f=f, hidden.states=hidden.states, fixed.eps=misse.obj$fixed.eps, condition.on.survival=condition.on.survival, root.type=root.type, root.p=root.p, includes.fossils=includes.fossils, strat.intervals=strat.intervals, fix.type=fix.type, scale.int=scale.int, min.number.points=min.number.points)
interval.results.final <- matrix(0, n.points+1, length(misse.obj$index.par))
for(i in 1:(n.points+1)){
par.rep <- unlist(interval.results[i,-1],use.names=FALSE)
interval.results.final[i,] <- c(par.rep,0)[misse.obj$index.par]
}
interval.results.final <- cbind(interval.results[,1], interval.results.final)
interval.results.in <- interval.results.final[which(interval.results.final[,1] - min(interval.results.final[,1])<=desired.delta),]
if(inherits(interval.results.in[1], what="numeric")){
ci.interval = apply(interval.results.in, 2, quantile)
colnames(interval.results.final) <- colnames(interval.results.in) <- colnames(ci.interval) <- interval.names
obj = NULL
obj$ci <- ci.interval
obj$points.within.region = interval.results.in
obj$all.points = interval.results.final
class(obj) = "misse.support"
return(obj)
}else{
stop("Only the MLE is in the desired range. Try reducing scale.int.", call.=FALSE)
}
}
AdaptiveConfidenceIntervalSamplingMiSSE <- function(par, lower, upper, desired.delta=2, n.points=5000, verbose=TRUE, phy, index.par, f, hidden.states, fixed.eps, condition.on.survival, root.type, root.p, includes.fossils, strat.intervals, fix.type, scale.int, min.number.points=10) {
# Some new prerequisites #
if(includes.fossils == TRUE){
if(!is.null(strat.intervals)){
strat.cache <- GetStratInfo(strat.intervals=strat.intervals)
gen <- FindGenerations(phy)
dat.tab <- OrganizeDataMiSSE(phy=phy, f=f, hidden.states=hidden.states, includes.intervals=TRUE, intervening.intervals=strat.cache$intervening.intervals, includes.fossils=includes.fossils)
#These are all inputs for generating starting values:
edge_details <- GetEdgeDetails(phy, includes.intervals=TRUE, intervening.intervals=strat.cache$intervening.intervals)
fossil.taxa <- edge_details$tipward_node[which(edge_details$type == "extinct_tip" | edge_details$type == "k_extinct_interval")]
}else{
gen <- FindGenerations(phy)
dat.tab <- OrganizeDataMiSSE(phy=phy, f=f, hidden.states=hidden.states, includes.intervals=FALSE, intervening.intervals=NULL, includes.fossils=includes.fossils)
#These are all inputs for generating starting values:
edge_details <- GetEdgeDetails(phy, includes.intervals=FALSE, intervening.intervals=NULL)
fossil.taxa <- edge_details$tipward_node[which(edge_details$type == "extinct_tip")]
}
}else{
fossil.taxa <- NULL
gen <- FindGenerations(phy)
dat.tab <- OrganizeDataMiSSE(phy=phy, f=f, hidden.states=hidden.states, includes.fossils=includes.fossils)
}
##########################
#Wrangle the data so that we can make use of DownPass easily:
actual.params <- which(index.par < max(index.par))
model.vec <- numeric(length(index.par))
model.vec[] <- c(par,0)[index.par]
cache <- ParametersToPassMiSSE(model.vec=model.vec, hidden.states=hidden.states, fixed.eps=fixed.eps, nb.tip=Ntip(phy), nb.node=Nnode(phy), bad.likelihood=exp(-300), ode.eps=0)
if(includes.fossils == TRUE){
if(!is.null(strat.intervals)){
starting <- -(DownPassMisse(dat.tab=dat.tab, gen=gen, cache=cache, condition.on.survival=condition.on.survival, root.type=root.type, root.p=root.p, node=fix.type[,1], state=NULL, fossil.taxa=fossil.taxa, fix.type=fix.type[,2]) + (strat.cache$k*log(cache$psi)) + (cache$psi*strat.cache$l_s))
}else{
starting <- -DownPassMisse(dat.tab=dat.tab, gen=gen, cache=cache, condition.on.survival=condition.on.survival, root.type=root.type, root.p=root.p, node=fix.type[,1], state=NULL, fossil.taxa=fossil.taxa, fix.type=fix.type[,2])
}
}else{
starting <- -DownPassMisse(dat.tab=dat.tab, gen=gen, cache=cache, condition.on.survival=condition.on.survival, root.type=root.type, root.p=root.p, node=NULL, fossil.taxa=fossil.taxa, fix.type=NULL)
}
#Generate the multipliers for feeling the boundaries:
min.multipliers <- rep(1, length(par))
max.multipliers <- rep(1, length(par))
results <- data.frame(data.frame(matrix(nrow=n.points+1, ncol=1+length(par))))
results[1,] <- unname(c(starting, par))
for (i in sequence(n.points)) {
sim.points <- NA
while(is.na(sim.points[1])) {
sim.points <- GenerateValues(par, lower=lower, upper=upper, scale.int=scale.int, examined.max=max.multipliers*apply(results[which(results[,1]-min(results[,1], na.rm=TRUE)<=desired.delta),-1], 2, max, na.rm=TRUE), examined.min=min.multipliers*apply(results[which(results[,1]-min(results[,1], na.rm=TRUE)<=desired.delta),-1], 2, min, na.rm=TRUE))
}
par <- sim.points
model.vec <- numeric(length(index.par))
model.vec[] <- c(sim.points,0)[index.par]
cache <- ParametersToPassMiSSE(model.vec=model.vec, hidden.states=hidden.states, fixed.eps=fixed.eps, nb.tip=Ntip(phy), nb.node=Nnode(phy), bad.likelihood=exp(-300), ode.eps=0)
if(includes.fossils == TRUE){
if(!is.null(strat.intervals)){
second <- -(DownPassMisse(dat.tab=dat.tab, gen=gen, cache=cache, condition.on.survival=condition.on.survival, root.type=root.type, root.p=root.p, node=fix.type[,1], state=NULL, fossil.taxa=fossil.taxa, fix.type=fix.type[,2]) + (strat.cache$k*log(cache$psi)) + (cache$psi*strat.cache$l_s))
}else{
second <- -DownPassMisse(dat.tab=dat.tab, gen=gen, cache=cache, condition.on.survival=condition.on.survival, root.type=root.type, root.p=root.p, node=fix.type[,1], state=NULL, fossil.taxa=fossil.taxa, fix.type=fix.type[,2])
}
}else{
second <- -DownPassMisse(dat.tab=dat.tab, gen=gen, cache=cache, condition.on.survival=condition.on.survival, root.type=root.type, root.p=root.p, node=NULL, fossil.taxa=fossil.taxa, fix.type=NULL)
}
results[i+1,] <- c(second, sim.points)
if(i%%20==0) {
for (j in sequence(length(par))) {
returned.range <- range(results[which((results[,1]-min(results[,1], na.rm=TRUE))<desired.delta), j+1], na.rm=TRUE)
total.range <- range(results[,j+1], na.rm=TRUE)
width.ratio <- diff(returned.range)/diff(total.range)
if(is.na(width.ratio)) {
width.ratio=1
}
if(width.ratio > 0.5) { #we are not sampling widely enough
min.multipliers[j] <- min.multipliers[j] * (1-scale.int)
max.multipliers[j] <- max.multipliers[j] * (1+scale.int) #expand the range
} else {
if(width.ratio < 0.02 & i>100) { # we are sampling too widely
min.multipliers[j] <- min.multipliers[j] * (1+scale.int)
max.multipliers[j] <- max.multipliers[j] * (1-scale.int) #contract the range
} else {
min.multipliers[j] <- 1
max.multipliers[j] <- 1
}
}
}
}
if (verbose && i%%100==0) {
cat(paste(i, "of", n.points, "points done"), "\n")
}
}
while(length(which((results[,1]-min(results[,1], na.rm=TRUE))<desired.delta))<min.number.points) {
warning("Did not generate enough points in the region; restarting to create additional points")
print(paste("Now doing an additional", 2+round(n.points/4), "points to the", dim(results)[1], "ones already done because not enough points in the good enough region were sampled"))
scale.int <- scale.int*0.5
new.results <- AdaptiveConfidenceIntervalSamplingMiSSE(par, lower=lower, upper=upper, desired.delta = desired.delta, n.points=n.points, verbose=verbose, phy=phy, index.par=index.par, f=f, hidden.states=hidden.states, fixed.eps=fixed.eps, condition.on.survival=condition.on.survival, root.type=root.type, root.p=root.p, includes.fossils=includes.fossils, fix.type=fix.type, scale.int=scale.int, min.number.points=0)
results <- rbind(results, new.results[-1,])
}
return(results)
}
print.misse.support <- function(x,...){
cat("\nSupport Region\n")
print(x$ci[,-1])
cat("\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.