Nothing
# File NSE.R
# Part of the hydroGOF R package, https://github.com/hzambran/hydroGOF
# https://cran.r-project.org/package=hydroGOF
# http://www.rforge.net/hydroGOF/ ;
# Copyright 2008-2023 Mauricio Zambrano-Bigiarini
# Distributed under GPL 2 or later
################################################################################
# 'NSE': Nash-Sutcliffe Efficiency #
################################################################################
# 15-Dic-2008 ; 06-Sep-09 #
# 29-Jun-2017 #
# 11-Jul-2022 ; 12-Jul-2022 ; 13-Jul-2022 #
# 20-Jan-2024 #
################################################################################
# Nash-Sutcliffe efficiencies (Nash and Sutcliffe, 1970) range from -Inf to 1.
# An efficiency of 1 (NSE = 1) corresponds to a perfect match of modeled to the observed data.
# An efficiency of 0 (NSE = 0) indicates that the model predictions are as accurate
# as the mean of the observed data, whereas
# an efficiency less than zero (-Inf < NSE < 0) occurs when the observed mean is a better predictor than the model.
# Essentially, the closer the model efficiency is to 1, the more accurate the model is.
# 'obs' : numeric 'data.frame', 'matrix' or 'vector' with observed values
# 'sim' : numeric 'data.frame', 'matrix' or 'vector' with simulated values
# 'Result': Nash-sutcliffe Efficiency between 'sim' and 'obs'
NSE <-function(sim, obs, ...) UseMethod("NSE")
NSE.default <- function (sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA){
# Checking 'epsilon.type'
epsilon.type <- match.arg(epsilon.type)
if ( is.na(match(class(sim), c("integer", "numeric", "ts", "zoo", "xts"))) |
is.na(match(class(obs), c("integer", "numeric", "ts", "zoo", "xts")))
) stop("Invalid argument type: 'sim' & 'obs' have to be of class: c('integer', 'numeric', 'ts', 'zoo', 'xts')")
# index of those elements that are present both in 'sim' and 'obs' (NON- NA values)
vi <- valindex(sim, obs)
if (length(vi) > 0) {
# Filtering 'obs' and 'sim', selecting only those pairs of elements
# that are present both in 'x' and 'y' (NON- NA values)
obs <- obs[vi]
sim <- sim[vi]
if (!is.null(fun)) {
fun1 <- match.fun(fun)
new <- preproc(sim=sim, obs=obs, fun=fun1, ...,
epsilon.type=epsilon.type, epsilon.value=epsilon.value)
sim <- new[["sim"]]
obs <- new[["obs"]]
} # IF end
denominator <- sum( (obs - mean(obs))^2 )
if ( (denominator != 0) & (!is.na(denominator)) ) {
NS <- 1 - ( sum( (obs - sim)^2 ) / denominator )
} else {
NS <- NA
warning("'sum((obs - mean(obs))^2)=0' => it is not possible to compute 'NSE'")
}
} else {
NS <- NA
warning("There are no pairs of 'sim' and 'obs' without missing values !")
} # ELSE end
return(NS)
} # 'NSE' end
NSE.matrix <- function(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA){
# Checking 'epsilon.type'
epsilon.type <- match.arg(epsilon.type)
# Checking that 'sim' and 'obs' have the same dimensions
if ( all.equal(dim(sim), dim(obs)) != TRUE )
stop( paste("Invalid argument: dim(sim) != dim(obs) ( [",
paste(dim(sim), collapse=" "), "] != [",
paste(dim(obs), collapse=" "), "] )", sep="") )
NS <- rep(NA, ncol(obs))
NS <- sapply(1:ncol(obs), function(i,x,y) {
NS[i] <- NSE.default( x[,i], y[,i], na.rm=na.rm, fun=fun, ...,
epsilon.type=epsilon.type, epsilon.value=epsilon.value)
}, x=sim, y=obs )
names(NS) <- colnames(obs)
return(NS)
} # 'NSE.matrix' end
NSE.data.frame <- function(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA){
# Checking 'epsilon.type'
epsilon.type <- match.arg(epsilon.type)
sim <- as.matrix(sim)
obs <- as.matrix(obs)
NSE.matrix(sim, obs, na.rm=na.rm, fun=fun, ...,
epsilon.type=epsilon.type, epsilon.value=epsilon.value)
} # 'NSE.data.frame' end
NSeff <-function(sim, obs, ...) UseMethod("NSE")
################################################################################
# Author: Mauricio Zambrano-Bigiarini #
################################################################################
# Started: 22-Mar-2013 #
# Updates: 12-Jul-2022 ; 13-Jul-2022 #
# 18-Jan-2024 ; 19-Jan-2024 #
################################################################################
NSE.zoo <- function(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA){
# Checking 'epsilon.type'
epsilon.type <- match.arg(epsilon.type)
sim <- zoo::coredata(sim)
if (is.zoo(obs)) obs <- zoo::coredata(obs)
if (is.matrix(sim) | is.data.frame(sim)) {
NSE.matrix(sim, obs, na.rm=na.rm, fun=fun, ..., epsilon.type=epsilon.type,
epsilon.value=epsilon.value)
} else NextMethod(sim, obs, na.rm=na.rm, fun=fun, ..., epsilon.type=epsilon.type,
epsilon.value=epsilon.value)
} # 'NSE.zoo' end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.