Nothing
# File cp.R
# Part of the hydroGOF R package, https://github.com/hzambran/hydroGOF
# https://cran.r-project.org/package=hydroGOF
# http://www.rforge.net/hydroGOF/ ;
# Copyright 2008-2024 Mauricio Zambrano-Bigiarini
# Distributed under GPL 2 or later
################################################################################
# 'cp': Coefficient of Persistence #
################################################################################
# Author: Mauricio Zambrano-Bigiarini #
################################################################################
# Started: 18-Dec-2008; #
# Updates: 06-Sep-2009; #
# 16-Jan-2023 #
# 20-Jan-2024 #
################################################################################
# Persistence Index (Kitadinis and Bras, 1980; Corradini et al., 1986)
# is used to compare the model performance agains a simple model using
# the observed value of the previous day as the prediction for the current day.
#Kitanidis, P.K., and Bras, R.L. 1980. Real-time forecasting with a conceptual
#hydrologic model. 2. Applications and results. Water Resources Research,
#Vol. 16, No. 6, pp. 1034:1044.
# The coefficient of persistencec omparest he predictions of the model
# with the predictions obtained by assuming that the process is a Wiener
# process(variance increasing linearly with time), in which case,
# the best estimate for the future is given by the latest measurement
# (Kitadinis and Bras, 1980)
# Persistence model efficiency (PME) is a normalized model evaluation statistic
# that quantifies the relative magnitude of the residual variance (noise)
# to the variance of the errors obtained by the use of a simple persistence
# model
# ("Ref: Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel,
# R.D., Veith, T.L. 2007. Model evaluation guidelines for systematic
# quantification of accuracy in watershed simulations.
# Transactions of the ASABE. 50(3):885-900..
# PME ranges from 0 to 1, with PME = 1 being the optimal value.
# PME values should be larger than 0.0 to indicate a minimally acceptable
# model performance (Gupta et al., 1999
# 'obs' : numeric 'data.frame', 'matrix' or 'vector' with observed values
# 'sim' : numeric 'data.frame', 'matrix' or 'vector' with simulated values
# 'Result': Persistence Index Efficiency between 'sim' and 'obs'
cp <-function(sim, obs, ...) UseMethod("cp")
cp.default <- function(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA){
if ( is.na(match(class(sim), c("integer", "numeric", "ts", "zoo"))) |
is.na(match(class(obs), c("integer", "numeric", "ts", "zoo")))
) stop("Invalid argument type: 'sim' & 'obs' have to be of class: c('integer', 'numeric', 'ts', 'zoo')")
# the next two lines are required for avoiding an strange behaviour
# of the difference function when sim and obs are time series.
if ( !is.na(match(class(sim), c("ts", "zoo"))) ) sim <- as.numeric(sim)
if ( !is.na(match(class(obs), c("ts", "zoo"))) ) obs <- as.numeric(obs)
# Checking 'epsilon.type'
epsilon.type <- match.arg(epsilon.type)
# index of those elements that are present both in 'sim' and 'obs' (NON- NA values)
vi <- valindex(sim, obs)
if (length(vi) > 0) {
# Filtering 'obs' and 'sim', selecting only those pairs of elements
# that are present both in 'x' and 'y' (NON- NA values)
obs <- obs[vi]
sim <- sim[vi]
if (!is.null(fun)) {
fun1 <- match.fun(fun)
new <- preproc(sim=sim, obs=obs, fun=fun1, ...,
epsilon.type=epsilon.type, epsilon.value=epsilon.value)
sim <- new[["sim"]]
obs <- new[["obs"]]
} # IF end
# lenght of the data sets that will be ocnsidered for the ocmputations
n <- length(obs)
denominator <- sum( ( obs[2:n] - obs[1:(n-1)] )^2 )
if ( (denominator != 0) & (!is.na(denominator)) ) {
cp <- ( 1 - ( sum( (obs[2:n] - sim[2:n])^2 ) / denominator ) )
} else {
cp <- NA
warning("'sum((obs[2:n]-obs[1:(n-1))^2)=0' -> it is not possible to compute 'cp' !")
}
} else {
cp <- NA
warning("There are no pairs of 'sim' and 'obs' without missing values !")
} # ELSE end
return(cp)
} # 'cp.default' end
################################################################################
# 'cp': Coefficient of Persistence #
################################################################################
# Started: 18-Dec-2008; #
# Updates: 06-Sep-2009; #
# 16-Jan-2023 #
################################################################################
cp.matrix <- function(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA){
# Checking 'epsilon.type'
epsilon.type <- match.arg(epsilon.type)
# Checking that 'sim' and 'obs' have the same dimensions
if ( all.equal(dim(sim), dim(obs)) != TRUE )
stop( paste("Invalid argument: dim(sim) != dim(obs) ( [",
paste(dim(sim), collapse=" "), "] != [",
paste(dim(obs), collapse=" "), "] )", sep="") )
cp <- rep(NA, ncol(obs))
cp <- sapply(1:ncol(obs), function(i,x,y) {
cp[i] <- cp.default( x[,i], y[,i], na.rm=na.rm, fun=fun, ...,
epsilon.type=epsilon.type,
epsilon.value=epsilon.value)
}, x=sim, y=obs )
names(cp) <- colnames(obs)
return(cp)
} # 'cp.matrix' end
################################################################################
# 'cp': Coefficient of Persistence #
################################################################################
# Started: 18-Dec-2008; #
# Updates: 06-Sep-2009; #
# 16-Jan-2023 #
################################################################################
cp.data.frame <- function(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA){
# Checking 'epsilon.type'
epsilon.type <- match.arg(epsilon.type)
sim <- as.matrix(sim)
obs <- as.matrix(obs)
cp.matrix(sim, obs, na.rm=na.rm, fun=fun, ...,
epsilon.type=epsilon.type, epsilon.value=epsilon.value)
} # 'cp.data.frame' end
################################################################################
# Author: Mauricio Zambrano-Bigiarini #
################################################################################
# Started: 22-Mar-2013 #
# Updates: 16-Jan-2023 #
################################################################################
cp.zoo <- function(sim, obs, na.rm=TRUE, fun=NULL, ...,
epsilon.type=c("none", "Pushpalatha2012", "otherFactor", "otherValue"),
epsilon.value=NA){
sim <- zoo::coredata(sim)
if (is.zoo(obs)) obs <- zoo::coredata(obs)
if (is.matrix(sim) | is.data.frame(sim)) {
cp.matrix(sim, obs, na.rm=na.rm, fun=fun, ...,
epsilon.type=epsilon.type, epsilon.value=epsilon.value)
} else NextMethod(sim, obs, na.rm=na.rm, fun=fun, ...,
epsilon.type=epsilon.type, epsilon.value=epsilon.value)
} # 'cp.zoo' end
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.