mre | R Documentation |
This function computes the mean relative error (MRE).
mre(predicted, observed, na.rm = FALSE)
predicted |
numeric vector that contains the model predicted data points (1st parameters) |
observed |
numeric vector that contains the observed data points (2nd parameters) |
na.rm |
logical vector that determines whether the missing values should be removed or not. |
(MRE) is expressed as
\frac{1}{N} \sum \limits_{i=1}^N \Bigg | \frac{P_i - O_i}{O_i} \Bigg |
the number of observations
the predicted values
the observed or reference values
mean relative error (MRE) as a numeric vector using the same
units as the given variables. The default choice is that any NA values
will be kept (na.rm = FALSE
). This can be changed by
specifying na.rm = TRUE
, such as mre(pre, obs, na.rm = TRUE)
.
Irucka Embry
Huang, J. (2018). "A Simple Accurate Formula for Calculating Saturation Vapor Pressure of Water and Ice", Journal of Applied Meteorology and Climatology, 57(6), 1265-1272. Retrieved Nov 4, 2021, https://web.archive.org/web/20221024040058/https://journals.ametsoc.org/view/journals/apme/57/6/jamc-d-17-0334.1.xml. Used the Internet Archive: Wayback Machine archived version for acceptance into CRAN. Used the Internet Archive: Wayback Machine archived version for acceptance into CRAN.
mape
for mean absolute percent error (MAPE), madstat
for
mean-absolute deviation (MAD), dr
for 'index of agreement (dr)', vnse
for Nash-Sutcliffe model efficiency (NSE), rmse
for
root mean square error (RMSE), and maxmre
for the maximum mean
relative error (MAXRE).
# Example 1
library(iemisc)
obs <- 1:10 # observed
pre <- 2:11 # predicted
mre(pre, obs)
# Example 2
install.load::load_package("iemisc", "rando")
set_n(100) # makes the example reproducible
obs1 <- r_norm(.seed = 873) # observed
pre1 <- r_norm(.seed = 281) # predicted
# using the vectors pre1 and obs1
mre(pre1, obs1)
# using a matrix of the numeric vectors pre1 and obs1
mat1 <- matrix(data = c(obs1, pre1), nrow = length(pre1), ncol = 2,
byrow = FALSE, dimnames = list(c(rep("", length(pre1))),
c("Predicted", "Observed")))
mre(mat1[, 2], mat1[, 1])
# mat1[, 1] # observed values from column 1 of mat1
# mat1[, 2] # predicted values from column 2 of mat1
# using a data.frame of the numeric vectors pre1 and obs1
df1 <- data.frame(obs1, pre1)
mre(df1[, 2], df1[, 1])
# df1[, 1] # observed values from column 1 of df1
# df1[, 2] # predicted values from column 2 of df1
library("data.table")
# using a data.table of the numeric vectors pre1 and obs1
df2 <- data.table(obs1, pre1)
mre(df2[, 2, with = FALSE][[1]], df2[, 1, with = FALSE][[1]])
# df2[, 1, with = FALSE][[1]] # observed values from column 1 of df2
# df2[, 2, with = FALSE][[1]] # predicted values from column 2 of df2
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.