Nothing
context("Check plotD3() functions")
library("DALEX")
library("ranger")
apartments_rf_model <- ranger(m2.price ~ construction.year + surface + floor +
no.rooms + district, data = apartments)
explainer_rf <- explain(apartments_rf_model,
data = apartmentsTest,
y = apartmentsTest$m2.price,
verbose = FALSE)
model_titanic_rf <- ranger(survived ~ gender + age + class + embarked +
fare + sibsp + parch,
data = titanic_imputed,
probability = TRUE)
explainer_titanic_rf <- explain(model_titanic_rf,
data = titanic_imputed[,-8],
y = titanic_imputed$survived,
label = "rf", verbose = FALSE)
test_that("plotD3 Feature Importance",{
fi_rf <- feature_importance(explainer_rf, loss_function = loss_root_mean_square)
p1 <- plotD3(fi_rf)
p2 <- plotD3(fi_rf, scale_height = TRUE)
p3 <- plotD3(fi_rf, bar_width = 20)
p4 <- plotD3(fi_rf, chart_title = "HELLO", scale_height = TRUE)
p5 <- plotD3(fi_rf, max_vars = 2, split = "feature")
expect_true("r2d3" %in% class(p1))
expect_true("r2d3" %in% class(p2))
expect_true("r2d3" %in% class(p3))
expect_true("r2d3" %in% class(p4))
expect_true("r2d3" %in% class(p5))
})
test_that("plotD3 Ceteris Paribus and plotD3 Aggregated Profiles",{
selected_passanger <- select_sample(titanic_imputed, n = 10)
cp_rf <- ceteris_paribus(explainer_titanic_rf, selected_passanger)
selected_passangers2 <- select_sample(titanic_imputed, n = 1)
cp_rf2 <- ceteris_paribus(explainer_titanic_rf, selected_passangers2)
p6 <- plotD3(cp_rf, variables = c("age","parch","fare","sibsp"),
size = 5, alpha = 0.5, show_rugs = TRUE, scale_plot = TRUE)
p7 <- plotD3(cp_rf2, variables = c("class", "embarked", "gender", "sibsp"),
facet_ncol = 2, variable_type = "categorical", label_margin = 100, scale_plot = TRUE)
expect_true("r2d3" %in% class(p6))
expect_true("r2d3" %in% class(p7))
expect_error(plotD3(cp_rf, variables = c("class", "embarked", "gender", "sibsp"),
facet_ncol = 2, variable_type = "categorical", label_margin = 100, scale_plot = TRUE))
pdp_rf_p <- aggregate_profiles(cp_rf, type = "partial")
pdp_rf_p$`_label_` <- "RF_partial"
pdp_rf_c <- aggregate_profiles(cp_rf, type = "conditional")
pdp_rf_c$`_label_` <- "RF_conditional"
pdp_rf_a <- aggregate_profiles(cp_rf, type = "accumulated")
pdp_rf_a$`_label_` <- "RF_accumulated"
p8 <- plotD3(pdp_rf_p, pdp_rf_c, pdp_rf_a)
pdp <- aggregate_profiles(cp_rf, type = "partial", variable_type = "categorical")
pdp$`_label_` <- "RF_partial"
p9 <- plotD3(pdp)
expect_true("r2d3" %in% class(p8))
expect_true("r2d3" %in% class(p9))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.