Nothing
#' Auxiliary function: generate all permutation orderings
#'
#' This function generates every permutation of the first n natural
#' numbers.
#' @param n integer, the first n natural numbers one wishes to
#' permute.
#' @return a list of all the permutations of the first n natural
#' numbers.
permuteN <- function(n){
if (n == 1) {
return(matrix(1))
} else {
sp <- permuteN(n - 1)
p <- nrow(sp)
A <- matrix(nrow = n * p, ncol = n)
for (i in 1:n){
A[(i - 1) * p + 1:p, ] <- cbind(i, sp + (sp >= i))
}
return(A)
}
}
#' Auxiliary function: generate all permutations of a vector
#'
#' This function generates every permutation of the elements in a
#' vector.
#' @param vector The vector whose elements are to be permuted.
#' @return a list of all the permutations of \code{vector}.
permute <- function(vector) {
n <- length(vector)
permList <- permuteN(n)
lapply(split(permList, seq(1, nrow(permList))),
function(x) vector[x])
}
#' Obtaining IV-like estimands
#'
#' This function performs TSLS to obtain the estimates for the IV-like
#' estimands.
#'
#' @param Y the vector of outcomes.
#' @param X the matrix of covariates (includes endogenous and
#' exogenous covariates).
#' @param Z the matrix of instruments (includes exogenous covariates
#' in the second stage).
#' @param lmcomponents vector of variable names from the second stage
#' that we want to include in the S-set of IV-like estimands. If
#' \code{NULL} is submitted, then all components will be included.
#' @param weights vector of weights.
#' @param order integer, the counter for which IV-like specification
#' and component the regression is for.
#' @param excluded boolean, to indicate whether or not the regression
#' involves excluded variables.
#' @return vector of select coefficient estimates.
piv <- function(Y, X, Z, lmcomponents = NULL, weights = NULL, order = NULL,
excluded = TRUE) {
## project regressors x on image of instruments z
if (ncol(Z) < ncol(X)) {
stop(gsub("\\s+", " ",
paste0("More regressors than instruments in the following
IV-like specification: ", formula, ".")), call. = FALSE)
}
fstage <-
try(if (is.null(weights)) lm.fit(Z, X) else lm.wfit(Z, X, weights),
silent = TRUE)
if (class(fstage) == "try-error") {
errorMessage <- fstage[[1]]
errorMessage <- gsub("Error in lm.fit\\(Z, X\\) : ", "", errorMessage)
errorMessage <- gsub("Error in lm.wfit\\(Z, X, weights\\) : ", "",
errorMessage)
stop(gsub("\\s+", " ",
paste0("IV-like specification ",
order,
" generates the following error:\n ",
trimws(errorMessage, which = "right"),
". Check the specification and its
corresponding subset condition.")), call. = FALSE)
}
if (is.null(dim(fstage$coef))) {
nullCheck <- is.na(fstage$coef)
} else {
nullCheck <- apply(X = fstage$coef, MARGIN = 1,
FUN = function(x) any(is.na(x)))
}
Xhat <- as.matrix(fstage$fitted.values)
colnames(Xhat) <- colnames(X)
## main regression
if (is.null(weights)) {
fit <- lm.fit(Xhat, Y)
} else {
fit <- lm.wfit(Xhat, Y, weights)
}
if (!is.null(lmcomponents)) {
return(list(coefficients = fit$coefficients[lmcomponents],
collinearInst = nullCheck))
} else {
return(list(coefficients = fit$coefficients,
collinearInst = nullCheck))
}
}
#' Obtaining IV-like specifications
#'
#' This function estimates the IV-like estimands, as well as generates
#' the weights associated with the IV-like specifications.
#'
#' @param formula formula to be estimated using OLS/IV.
#' @param data \code{data.frame} with which to perform the estimation.
#' @param subset subset condition with which to perform the estimate.
#' @param components vector of variable names whose coefficients we
#' want to include in the set of IV-like estimands.
#' @param treat name of treatment indicator variable.
#' @param list logical, set to TRUE if this function is being used to
#' loop over a list of formulas.
#' @param order integer, default set to \code{NULL}. This is simply an
#' index of which IV-like specification the estimate corresponds
#' to.
#' @return Returns a list containing the matrices of IV-like
#' specifications for \code{D = 0} and \code{D = 1}; and the
#' estimates of the IV-like estimands.
#'
#' @examples
#' dtm <- ivmte:::gendistMosquito()
#' ivEstimate(formula = ey ~ d | z,
#' data = dtm,
#' components = l(d),
#' treat = d,
#' list = FALSE)
#' @export
ivEstimate <- function(formula, data, subset, components, treat,
list = FALSE, order = NULL) {
treatTmp <- try(deparse(treat), silent = TRUE)
if (class(treatTmp) == "try-error") {
treat <- deparse(substitute(treat))
} else {
treat <- treatTmp
rm(treatTmp)
}
treat <- gsub("~", "", treat)
treat <- gsub("\\\"", "", treat)
formula <- Formula::as.Formula(formula)
call <- match.call(expand.dots = FALSE)
## Select components
if (list == TRUE) {
if (!is.character(components)) {
components <- unlist(deparse(components))
}
} else {
components <- unlist(lapply(components, deparse))
components <- paste0("c(",
paste(components, collapse = ", "),
")")
}
if (length(components > 1)) {
components <- gsub("\\s+", " ", Reduce(paste, components))
}
## Obtain design matrices
if (list == TRUE) {
mf <- design(formula, data)
} else {
mf <- eval(modcall(call,
newcall = design,
keepargs = c("formula", "subset"),
newargs = list(data = quote(data))))
}
instrumented <- !is.null(mf$Z)
xVars <- colnames(mf$X)
## Covert components into a vector of strings
stringComp <- (substr(components, 1, 2) == "c(" &
substr(components, nchar(components), nchar(components)) == ")")
if (stringComp){
components <- substr(components, 3, nchar(components) - 1)
components <- strsplit(components, ", ")[[1]]
}
components <- gsub(") - ", ")", components)
origComponents <- components
componentsSplit <- strsplit(components, ":")
## Prepare expansion of components
componentsFull <- NULL
componentsType <- NULL
componentsIndex <- NULL
ci <- 1
for (comp in componentsSplit) {
complist <- list()
comptype <- NULL
for (subcomp in comp) {
## Exand the undeclared factor variables
fcheck <- grepl(pattern = "^factor\\(.*\\)$", x = subcomp)
if (fcheck) {
fvar <- all.vars(as.formula(paste("~", subcomp)))
if (length(fvar) > 1) {
stop(gsub("\\s+", " ",
paste0("Factor expression ",
subcomp, " includes more than
one variable.")))
}
grepSubcomp <- gsub("\\(", "\\\\\\(", subcomp)
grepSubcomp <- gsub("\\)", "\\\\\\)", grepSubcomp)
grepSubcomp <- gsub("\\.", "\\\\\\.", grepSubcomp)
fexpanded <- sapply(xVars, function(x) {
fpos <- grep(grepSubcomp, unlist(strsplit(x, ":")))
unlist(strsplit(x, ":"))[fpos]
})
fexpanded <- sort(unique(unlist(fexpanded)))
complist[[length(complist) + 1]] <- fexpanded
comptype <- c(comptype, "f")
}
## Expand the boolean variables
bcheck <- any(sapply(c("==", "!=", ">", ">=", "<", "<="),
grepl, x = subcomp))
if (bcheck) {
bexpanded <- paste0(subcomp, c("TRUE", "FALSE"))
complist[[length(complist) + 1]] <- bexpanded
comptype <- c(comptype, "b")
}
if (!fcheck && !bcheck) {
complist[[length(complist) + 1]] <- subcomp
comptype <- c(comptype, "s")
}
}
## Classify the types of components
comptype <- unique(comptype)
if (length(comptype) == 1 && comptype == "s") {
comptype <- 1 ## Specified component---cannot be dropped
} else if ("s" %in% comptype && ("f" %in% comptype | "b" %in% comptype)) {
comptype <- 2 ## Contains specified component, with some
## kind of expansion. This will be dropped
## without warning since the specified
## component will appear in every expansion.
} else if (! "s" %in% comptype) {
comptype <- 3 ## Only expanded components. Can also be
## dropped without warning.
}
## Construct the full set of components
if (length(complist) == 1) {
componentsExp <- complist[[1]]
} else {
componentsExp <- complist[[1]]
for (i in 2:(length(complist))) {
componentsExp <- outer(componentsExp,
complist[[i]],
paste,
sep = ":")
}
componentsExp <- c(componentsExp)
}
componentsFull <- c(componentsFull, componentsExp)
componentsType <- c(componentsType,
rep(comptype, length(componentsExp)))
componentsIndex <- c(componentsIndex,
rep(ci, length(componentsExp)))
ci <- ci + 1
}
components <- parenthBoolean(componentsFull)
## Some interactions may need to be relabled by reordering the
## order of the interaction
failTerms <- which(!components %in% xVars)
for (fail in failTerms) {
vars <- strsplit(components[fail], ":")[[1]]
varsPerm <- permute(vars)
varsPerm <- unlist(lapply(varsPerm,
function(x) paste(x, collapse = ":")))
correctPos <- which(varsPerm %in% xVars)
if (length(correctPos) > 0) {
components[fail] <- varsPerm[correctPos]
}
}
## Now restrict components
failTerms <- which(!components %in% xVars)
if ("intercept" %in% components) {
failTerms <- failTerms[failTerms != which(components == "intercept")]
}
if (length(failTerms) > 0) {
if (!all(sort(unique(componentsIndex)) ==
sort(unique(componentsIndex[-failTerms])))) {
missingComp <- which(! sort(unique(componentsIndex)) %in%
sort(unique(componentsIndex[-failTerms])))
missingComp <- origComponents[missingComp]
stop(gsub("\\s+", " ",
paste0("The following components are not included
in the IV-like specification: ",
paste(missingComp, collapse = ", "),
". Remove them from the components list, or
update the corresponding IV-like specification.")))
}
components <- components[-failTerms]
}
## Generate the lmcomponents vector
lmcomponents <- components
lmcomponents[lmcomponents == "intercept"] <- "(Intercept)"
## Obtain s-weights and the beta-hats
if (!instrumented) {
if (list == TRUE) {
## Declaratoin of subsets is unnecessary since data is
## already subsetted.
data[, colnames(data) == treat] <- 0
mf0X <- design(formula = formula,
data = data,
treat = treat,
orig.names = colnames(mf$X))
mf0X <- mf0X$X
data[, colnames(data) == treat] <- 1
mf1X <- design(formula = formula,
data = data,
treat = treat,
orig.names = colnames(mf$X))
mf1X <- mf1X$X
} else {
data[, colnames(data) == treat] <- 0
mf0X <- eval(modcall(call,
newcall = design,
keepargs = c("formula", "subset"),
newargs = list(data = quote(data),
treat = treat,
orig.names = colnames(mf$X))))
mf0X <- mf0X$X
data[, colnames(data) == treat] <- 1
mf1X <- eval(modcall(call,
newcall = design,
keepargs = c("formula", "subset"),
newargs = list(data = quote(data),
treat = treat,
orig.names = colnames(mf$X))))
mf1X <- mf1X$X
}
bhat <- piv(mf$Y, mf$X, mf$X, lmcomponents, order = order,
excluded = FALSE)$coef
if (sum(is.na(bhat))) {
collinearPos <- which(is.na(bhat))
collinearVars <- lmcomponents[collinearPos]
mfX <- mf$X[, -which(colnames(mf$X) %in% collinearVars)]
mf0X <- mf0X[, -which(colnames(mf0X) %in% collinearVars)]
mf1X <- mf1X[, -which(colnames(mf1X) %in% collinearVars)]
collinearCompPos <- which(components %in% names(bhat)[collinearPos])
if (length(collinearCompPos) > 0) components <-
components[-collinearCompPos]
sweight <- olsj(mfX, mf0X, mf1X, components, treat, order)
bhat <- bhat[-collinearPos]
} else {
sweight <- olsj(mf$X, mf0X, mf1X, components, treat, order)
}
} else {
if (length(formula)[2] == 2 &
dim(mf$X)[2] <= dim(mf$Z)[2]) {
if (list == TRUE) {
data[, colnames(data) == treat] <- 0
mf0Z <- design(formula = formula,
data = data,
treat = treat,
orig.names = colnames(mf$X))$Z
data[, colnames(data) == treat] <- 1
mf1Z <- design(formula = formula,
data = data,
treat = treat,
orig.names = colnames(mf$X))$Z
} else {
data[, colnames(data) == treat] <- 0
mf0Z <- eval(modcall(call,
newcall = design,
keepargs = c("formula", "subset"),
newargs = list(data = quote(data),
treat = treat,
orig.names =
colnames(mf$X))))
mf0Z <- mf0Z$Z
data[, colnames(data) == treat] <- 1
mf1Z <- eval(modcall(call,
newcall = design,
keepargs = c("formula", "subset"),
newargs = list(data = quote(data),
treat = treat,
orig.names =
colnames(mf$X))))
mf1Z <- mf1Z$Z
}
ivfit <- piv(mf$Y, mf$X, mf$Z, lmcomponents, order = order,
excluded = TRUE)
bhat <- ivfit$coef
collinearInst <- ivfit$collinearInst
if (sum(is.na(bhat)) | sum(collinearInst)) {
if (sum(is.na(bhat))) {
collinearPos <- which(is.na(bhat))
collinearVars <- lmcomponents[collinearPos]
mfX <- mf$X[, -which(colnames(mf$X) %in% collinearVars)]
collinearCompPos <-
which(components %in% names(bhat)[collinearPos])
if (length(collinearCompPos) > 0) {
components <- components[-collinearCompPos]
}
} else {
mfX <- mf$X
}
if (sum(collinearInst)) {
mfZ <- mf$Z[, !collinearInst]
mf0Z <- mf0Z[, !collinearInst]
mf1Z <- mf1Z[, !collinearInst]
} else {
mfZ <- mf$Z
}
sweight <- tsls(mfX, mfZ, mf0Z, mf1Z, components, treat, order)
if (sum(is.na(bhat))) bhat <- bhat[-collinearPos]
} else {
sweight <- tsls(mf$X, mf$Z, mf0Z, mf1Z, components, treat, order)
}
} else if (length(formula)[2] == 2 & dim(mf$X)[2] > dim(mf$Z)[2]) {
stop(gsub("\\s+", " ",
paste0("More regressors than instruments in the following
IV-like specification: ", deparse(formula), ".")))
} else {
stop(gsub("\\s+", " ",
paste0("The following IV-like specification is not
properly specified: ", deparse(formula), ".")))
}
}
if (!is.null(sweight$errorfactors)) {
bhat <- bhat[-which(lmcomponents %in% sweight$errorfactors)]
}
return(list(sw0 = sweight$s0, sw1 = sweight$s1, betas = bhat))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.