R/lav_lavaan_step10_cache.R

Defines functions lav_lavaan_step10_cache

lav_lavaan_step10_cache <- function(slotCache = NULL, # nolint
                                    lavdata = NULL,
                                    lavmodel = NULL,
                                    lavpartable = NULL,
                                    lavoptions = NULL,
                                    sampling.weights = NULL) {
  # # # # # # # # # # #
  # #  10. lavcache # #
  # # # # # # # # # # #

  # if slotCache not NULL
  #   copy to lavcache
  # else
  #   lavcache = list of length lavdata@ngroups
  #   set tmp.ov.types = lavdata$ov$types
  #   if lavmodel@conditional.x and sum(lavmodel@nexo) > 0L remove elements
  #     lavpta$vidx$ov.x from tmp.ov.types
  #   if lavoptions$estimator == "PML" and all tmp.ov.types are "ordered"
  #     th = computeTH(lavmodel)
  #     bi = lav_tables_pairwise_freq_cells(lavdata)
  #     if lavoptions$missing is "available.cases" or "doubly.robust"
  #       uni = lav_tables_univariate_freq_cell(lavdata)
  #       if lavoptions$missing is "doubly.robust"
  #         if lavoptions$control$pairwiseProbGivObs NULL: *** error ***
  #         if lavoptions$control$univariateProbGivObs NULL: *** error ***
  #     for all groups (1:lavdata@ngroups)
  #       set tmp.idx = 1:length(bi$ibs.freq)
  #       if bi$group not NULL and max(bi$group) > 1L set tmp.idx = indexes
  #         for this group in bi
  #       set bifreq = bi$obs.freq[tmp.idx]
  #       set binobs = bi$nobs[tmp.idx]
  #       set long = LongVecInd(no.x = ncol(lavdata@X[[g]]),
  #                             all.thres = th[[g]],
  #                             index.var.of.thres = lavmodel@th.idx[[g]])
  #       set lavcache[[g]] = list(bifreq = bifreq, nobs = binobs, long = long)
  #       if sampling.weights not NULL
  #         compute (for group g) lavcache[[g]]$sum_obs_weights_xixj_ab_vec (*)
  #       if lavoptions$missing is "available.cases" or "doubly.robust"
  #         set tmp.idx = 1:length(bi$ibs.freq)
  #         if bi$group not NULL and max(bi$group) > 1L set tmp.idx = indexes
  #           for this group in bi
  #         set lavcache[[g]]$unifreq = unifreq = uni$obs.freq[tmp.idx]
  #         set lavcache[[g]]$uninobs = uninobs = uni$nobs[tmp.idx]
  #         set lavcache[[g]]$uniweights.casewise = uniweights.casewise =
  #           rowSums(is.na(lavdata@X[[g]]))
  #         compute lavcache[[g]]$uniweights (*)
  #       if lavoptions$missing is "doubly.robust"
  #         lavcache[[g]]$pairwiseProbGivObs =
  #           lavoptions$control$pairwiseProbGivObs[[g]]
  #         lavcache[[g]]$univariateProbGivObs =
  #           lavoptions$control$univariateProbGivObs[[g]]
  #         compute members idx.y1, idx.gy2, idx.cat.y1, idx.cat.gy2 and
  #           id.uniPrGivObs from
  #           lavchache[[g]] (*)
  #   if lavdata$data.type is "full" and lavdata@Rp[[1L]] not NULL
  #     copy lavdata@Rp[[g]]$pat to lavcache[[g]]$pat for all groups g
  # if lavoptions$estimator is "MML"
  #   compute for all groups g lavcache[[g]]$GH via
  #     lav_integration_gauss_hermite
  #
  # (*) !!! computations too complicated to summarize here !!!

  if (!is.null(slotCache)) {
    lavcache <- slotCache
  } else {
    # prepare cache -- stuff needed for estimation, but also post-estimation
    lavcache <- vector("list", length = lavdata@ngroups)

    # ov.types? (for PML check)
    tmp.ov.types <- lavdata@ov$type
    if (lavmodel@conditional.x && sum(lavmodel@nexo) > 0L) {
      # remove ov.x
      tmp.ov.x.idx <- unlist(attr(lavpartable, "vidx")$ov.x)
      tmp.ov.types <- tmp.ov.types[-tmp.ov.x.idx]
    }

    if (lavoptions$estimator == "PML" && all(tmp.ov.types == "ordered")) {
      th <- computeTH(lavmodel)
      bi <- lav_tables_pairwise_freq_cell(lavdata)

      # handle option missing = "available.cases" or "doubly.robust"
      if (lavoptions$missing == "available.cases" ||
        lavoptions$missing == "doubly.robust") {
        uni <- lav_tables_univariate_freq_cell(lavdata)
        # checks for missing = "double.robust"
        if (lavoptions$missing == "doubly.robust") {
          # check whether the probabilities pairwiseProbGivObs and
          # univariateProbGivObs are given by the user
          if (is.null(lavoptions$control$pairwiseProbGivObs)) {
            lav_msg_stop(gettext(
              "could not find `pairwiseProbGivObs' in control() list"))
          }
          if (is.null(lavoptions$control$univariateProbGivObs)) {
            lav_msg_stop(gettext(
              "could not find `univariateProbGivObs' in control() list"))
          }
        }
      }

      for (g in 1:lavdata@ngroups) {
        if (is.null(bi$group) || max(bi$group) == 1L) {
          bifreq <- bi$obs.freq
          binobs <- bi$nobs
        } else {
          idx <- which(bi$group == g)
          bifreq <- bi$obs.freq[idx]
          binobs <- bi$nobs[idx]
        }
        long <- LongVecInd(
          no.x = ncol(lavdata@X[[g]]),
          all.thres = th[[g]],
          index.var.of.thres = lavmodel@th.idx[[g]]
        )
        lavcache[[g]] <- list(
          bifreq = bifreq,
          nobs = binobs,
          long = long
        )

        # >>>>>>>> HJ/MK PML CODE >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

        # I need to add something that splits weights into g groups so
        # adjust what follows in the new code also compute the sum of
        # weights within a group, this will substitute n_g (group size)
        # of simple random sampling (SRS) and also compute the total the
        # total sum of weights over all observation over all groups,
        # this substitutes the total sample size of SRS.

        if (!is.null(sampling.weights)) {
          # Keep track of indices of the response categories (a,b) of a
          # pair of ordinal variables (xi,xj) appearing in the data as
          # well as the index of the pair.
          idx_ab_of_xixj_ab <- lapply(long[c(1:2, 5)], function(x) {
            x[(long$index.thres.var1.of.pair != 0) &
              (long$index.thres.var2.of.pair != 0)]
          })
          names(idx_ab_of_xixj_ab) <- c("idx_a", "idx_b", "idx_pairs")
          lavcache[[g]]$idx_ab_of_xixj_ab <- idx_ab_of_xixj_ab

          # Raw data for group g
          X.g <- lavdata@X[[g]] # nolint

          # I assume that X.g includes only the ordinal indicators nvar
          # gives the number of ordinal indicators
          nvar <- ncol(X.g)

          # pstar gives the number of pairs formed by the nvar ordinal
          # indicators
          pstar <- nvar * (nvar - 1) / 2

          # Keep track of the indices of variables forming each pair
          idx_vars_in_pair <- combn(nvar, 2)

          # The output of sapply below provides the sum of weights for
          # all bivariate response pattern for all pairs of indicators.

          # If all indicators have the same number of response
          # categories, the output of sapply function below is a matrix.
          # Each column refers to a different pair of indicators (i,j)
          # with j running faster than i, e.g. (1,2) (1,3) (2,3). Within
          # each column, each element (i.e. each row of the matrix)
          # refers to a different combination of response categories
          # (a,b) with a, the category index of indicator i, running
          # faster than b, the category index of indicator j, e.g.
          # (1,1), (2,1) (3,1) (1,2) (2,2) (3,2)

          # If the indicators have different number of response
          # categories, the output of sapply function below is a list.
          # Each element of the list refers to a different pair of
          # indicators (i,j) with j running faster than i and it is a
          # matrix with number of rows the number of response categories
          # of indicator i and ncol =  the number of response categories
          # of indicator j.

          sum_obs_weights_xixj_ab <- sapply(1:pstar, function(x) {
            tmp_idx_ab <- lapply(idx_ab_of_xixj_ab, function(y) {
              y[idx_ab_of_xixj_ab$idx_pairs == x]
            })
            tmp_idx_cols <- idx_vars_in_pair[, x]
            tmp_var1 <- factor(X.g[, tmp_idx_cols[1]],
              levels =
                as.character(unique(tmp_idx_ab$idx_a))
            )
            tmp_var2 <- factor(X.g[, tmp_idx_cols[2]],
              levels =
                as.character(unique(tmp_idx_ab$idx_b))
            )
            tapply(
              X = lavdata@weights[[g]],
              INDEX = list(tmp_var1, tmp_var2),
              FUN = sum
            )
          })

          # We need to transform the output of sapply into a vector
          # where the sum of weights (for all bivariate response
          # patterns for all pairs of indicators) are listed in the same
          # order as in pairwisePI vector, i.e. a runs the fastest,
          # followed by b, then by j and lastly by i.

          if (is.matrix(sum_obs_weights_xixj_ab)) {
            sum_obs_weights_xixj_ab_vec <- c(sum_obs_weights_xixj_ab)
          } else if (is.list(sum_obs_weights_xixj_ab)) {
            sum_obs_weights_xixj_ab_vec <-
              do.call(c, sum_obs_weights_xixj_ab)
          }

          # Note that sapply gives NA for these bivariate response
          # patterns which are not observed at all. Substitute NA with
          # 0.
          idx_na_sowxav <- is.na(sum_obs_weights_xixj_ab_vec)
          if (any(idx_na_sowxav)) {
            sum_obs_weights_xixj_ab_vec[idx_na_sowxav] <- 0
          }

          lavcache[[g]]$sum_obs_weights_xixj_ab_vec <-
            sum_obs_weights_xixj_ab_vec
        }

        # >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

        # available cases
        if (lavoptions$missing == "available.cases" ||
          lavoptions$missing == "doubly.robust") {
          if (is.null(uni$group) || max(uni$group) == 1L) {
            unifreq <- uni$obs.freq
            uninobs <- uni$nobs
          } else {
            idx <- which(uni$group == g)
            unifreq <- uni$obs.freq[idx]
            uninobs <- uni$nobs[idx]
          }
          lavcache[[g]]$unifreq <- unifreq
          lavcache[[g]]$uninobs <- uninobs

          uniweights.casewise <- rowSums(is.na(lavdata@X[[g]]))
          lavcache[[g]]$uniweights.casewise <- uniweights.casewise

          # weights per response category per variable in the same
          # order as unifreq; i.e. w_ia, i = 1,...,p, (p variables),
          # a = 1,...,Ci, (Ci response categories for variable i),
          # a running faster than i
          tmp.uniweights <- apply(
            lavdata@X[[g]], 2,
            function(x) {
              tapply(uniweights.casewise, as.factor(x), sum,
                na.rm = TRUE
              )
            }
          )
          if (is.matrix(tmp.uniweights)) {
            lavcache[[g]]$uniweights <- c(tmp.uniweights)
          }
          if (is.list(tmp.uniweights)) {
            lavcache[[g]]$uniweights <- unlist(tmp.uniweights)
          }
        } # "available.cases" or "double.robust"

        # doubly.robust only
        if (lavoptions$missing == "doubly.robust") {
          # add the provided by the user probabilities
          # pairwiseProbGivObs and univariateProbGivObs in Cache
          lavcache[[g]]$pairwiseProbGivObs <-
            lavoptions$control$pairwiseProbGivObs[[g]]
          lavcache[[g]]$univariateProbGivObs <-
            lavoptions$control$univariateProbGivObs[[g]]
          # compute different indices vectors that will help to do
          # calculations
          ind.vec <- as.data.frame(long[1:5])
          ind.vec <-
            ind.vec[((ind.vec$index.thres.var1.of.pair != 0) &
              (ind.vec$index.thres.var2.of.pair != 0)), ]
          idx.cat.y1 <- ind.vec$index.thres.var1.of.pair
          idx.cat.y2 <- ind.vec$index.thres.var2.of.pair
          idx.pairs <- ind.vec$index.pairs.extended
          lavcache[[g]]$idx.pairs <- idx.pairs

          idx.cat.y1.split <- split(idx.cat.y1, idx.pairs)
          idx.cat.y2.split <- split(idx.cat.y2, idx.pairs)
          lavcache[[g]]$idx.cat.y1.split <- idx.cat.y1.split
          lavcache[[g]]$idx.cat.y2.split <- idx.cat.y2.split

          # generate the variables, categories indices vector which
          # keep track to which variables and categories the
          # elements of vector probY1Gy2 refer to
          nlev <- lavdata@ov$nlev
          nvar <- length(nlev)

          idx.var.matrix <- matrix(1:nvar, nrow = nvar, ncol = nvar)
          idx.diag <- diag(matrix(1:(nvar * nvar),
            nrow = nvar,
            ncol = nvar
          ))
          idx.y1gy2.matrix <- rbind(
            t(idx.var.matrix)[-idx.diag],
            idx.var.matrix[-idx.diag]
          )
          no.pairs.y1gy2 <- ncol(idx.y1gy2.matrix)
          idx.cat.y1 <- unlist(lapply(1:no.pairs.y1gy2, function(x) {
            rep(1:nlev[idx.y1gy2.matrix[1, x]],
              times = nlev[idx.y1gy2.matrix[2, x]]
            )
          }))
          idx.cat.gy2 <- unlist(lapply(1:no.pairs.y1gy2, function(x) {
            rep(1:nlev[idx.y1gy2.matrix[2, x]],
              each = nlev[idx.y1gy2.matrix[1, x]]
            )
          }))
          dim.pairs <- unlist(lapply(1:no.pairs.y1gy2, function(x) {
            nlev[idx.y1gy2.matrix[1, x]] *
              nlev[idx.y1gy2.matrix[2, x]]
          }))
          idx.y1 <- unlist(mapply(rep, idx.y1gy2.matrix[1, ],
            each = dim.pairs
          ))
          idx.gy2 <- unlist(mapply(rep, idx.y1gy2.matrix[2, ],
            each = dim.pairs
          ))

          lavcache[[g]]$idx.y1 <- idx.y1
          lavcache[[g]]$idx.gy2 <- idx.gy2
          lavcache[[g]]$idx.cat.y1 <- idx.cat.y1
          lavcache[[g]]$idx.cat.gy2 <- idx.cat.gy2

          # the vector below keeps track of the variable each column
          # of the matrix univariateProbGivObs refers to
          lavcache[[g]]$id.uniPrGivObs <-
            sort(c(
              unique(lavmodel@th.idx[[g]]),
              lavmodel@th.idx[[g]]
            ))
        } # doubly.robust
      } # g
    }
    # copy response patterns to cache -- FIXME!! (data not included
    # in Model only functions)
    if (lavdata@data.type == "full" && !is.null(lavdata@Rp[[1L]])) {
      for (g in 1:lavdata@ngroups) {
        lavcache[[g]]$pat <- lavdata@Rp[[g]]$pat
      }
    }
  }

  # If estimator = MML, store Gauss-Hermite nodes/weights
  if (lavoptions$estimator == "MML") {
    for (g in 1:lavdata@ngroups) {
      # count only the ones with non-normal indicators
      # nfac <- lavpta$nfac.nonnormal[[g]]
      nfac <- attr(lavpartable, "nfac")[[g]]
      lavcache[[g]]$GH <-
        lav_integration_gauss_hermite(
          n = lavoptions$integration.ngh,
          dnorm = TRUE,
          mean = 0, sd = 1,
          ndim = nfac
        )
      # lavcache[[g]]$DD <- lav_model_gradient_DD(lavmodel, group = g)
    }
  }

  lavcache
}

Try the lavaan package in your browser

Any scripts or data that you put into this service are public.

lavaan documentation built on Sept. 27, 2024, 9:07 a.m.