R/npEM.R

Defines functions npEM

Documented in npEM

## EM-like algorithm for a nonparametric mixture model with
## independent repeated measures - some ID, some not
npEMindrep <- # npEMindrep is an alias (only for backward compatibility)
  npEM <- function(x, mu0, blockid = 1:ncol(x),
                   bw=bw.nrd0(as.vector(as.matrix(x))), samebw = TRUE,
                   h=bw, eps=1e-8,
                   maxiter=500, stochastic = FALSE, verb = TRUE){
    bw <- h # h is alternative bandwidth argument, for backward compatibility
    x <- as.matrix(x)
    n <- nrow(x)      # number of subjects
    r <- ncol(x)      # number of measurements in each subject
    u <- match(blockid, unique(blockid))
    if (is.matrix(mu0)) 
      m <- dim(mu0)[1]  # mu0=centers
    else 
      m <- mu0  # mu0=number of clusters
    if(!samebw && !is.matrix(bw)) { 
      bw <- matrix(bw, nrow=max(u), ncol=m)
    }
    z.hat <- matrix(0, nrow = n, ncol = m)
    tt0 <-  proc.time() # for total time
    ## Initial Values
    if(m == 1) z.hat <- matrix(1, nrow = n, ncol = m)
    else{
      kmeans <- kmeans(x, mu0)
      for(j in 1:m)
        z.hat[kmeans$cluster==j, j] <- 1
    }
    iter <- 0
    if (stochastic) {
      sumpost <- matrix(0, n, m)
    }
    finished <- FALSE
    lambda <- matrix(0, nrow = maxiter, ncol = m)
    loglik <- NULL
    orderx <- xx <- list()
    for(k in 1:max(u)) {
      xx[[k]] <- as.vector(x[, u==k])
      if (!samebw) {
        orderx[[k]] = order(xx[[k]]) # only needed for IQR calculation for bw
      }
    }
    ### Cfunction <- ifelse(samebw, "KDErepeated", "KDErepeatedbw")
    
    while (!finished) {
      iter <- iter + 1
      bw.old <- bw
      t0 <- proc.time()
      
      ## Note:  Enter loop assuming E-step is done -- i.e., z.hat in place    
      ## M-Step
      lambda[iter, ] <- colMeans(z.hat)
      
      ## density estimation step
      if (stochastic) {
        z <- t(apply(z.hat, 1, function(prob) rmultinom(1, 1, prob)))
        cs <- colSums(z)
        z.tmp <- sweep(z, 2, cs, "/")
        z.tmp[, cs==0] <- 1/NROW(z.tmp) # Just in case
      }
      else {
        cs <- colSums(z.hat)
        z.tmp <- sweep(z.hat, 2, cs, "/")
        z.tmp[, cs==0] <- 1/NROW(z.tmp) # Just in case
      }
      fkernel <- matrix(1, n, m)
      h <- bw # This is for samebw == TRUE
      for (k in 1:max(u)) {
        r2 <- sum(u == k)	# block size
        if (!samebw) {
          wts <- apply(z.tmp, 2, function(z) rep(z/r2, r2))
          variances <- colSums(wts * outer(xx[[k]], colSums(wts * xx[[k]]), '-')^2)
          iqr <- apply(as.matrix(wts[orderx[[k]],]), 2, wIQR, xx[[k]][orderx[[k]]], 
                       already.sorted=TRUE, already.normalized=TRUE)
          h <- bw[k, ] <- 0.9 * pmin(sqrt(variances), iqr/1.34) * 
            pmax(1,r2*n*lambda[iter, ])^(-1/5) 
          # Note:  Doesn't allow "sample size" < 1.
          #      browser()
        }
        if(samebw){
          ans <- .C(C_KDErepeated, n = as.integer(n), m = as.integer(m), 
                    r = as.integer(r2), x = as.double(x[,u==k]),
                    h = as.double(h), z = as.double(z.tmp), f = double(n*m), 
                    PACKAGE="mixtools")
        } else{
          ans <- .C(C_KDErepeatedbw, n = as.integer(n), m = as.integer(m), 
                    r = as.integer(r2), x = as.double(x[,u==k]),
                    h = as.double(h), z = as.double(z.tmp), f = double(n*m), 
                    PACKAGE="mixtools")
        }
        fkernel <- fkernel * matrix(ans$f, ncol = m)
      }
      lambda.f <- sweep(fkernel, 2, lambda[iter, ], "*")
      
      ## E-step (for next iteration)
      z.hat <- lambda.f/rowSums(lambda.f)
      
      loglik <- c(loglik,sum(log(rowSums(lambda.f)))) # log-likelihood
      finished <- iter >= maxiter
      if (stochastic) {
        sumpost <- sumpost + z.hat
      } 
      else if (iter > 1) { # This convergence criterion may be too simplistic:
        maxchange <- max(abs(lambda[iter,] - lambda[iter-1,]))
        if (!samebw) 
          maxchange <- max(maxchange, max(abs(bw.old - bw)))
        finished <- finished | (maxchange < eps)
      }
      if (verb) {
        t1 <- proc.time()
        cat("iteration", iter, "  lambda ", round(lambda[iter, ], 4))
        cat(" time", (t1 - t0)[3], "\n")
      }
    }
    if (!samebw) {
      rownames(bw) <- paste("block", 1:max(u))
      colnames(bw) <- paste("component", 1:m)
    }
    if (verb) {
      tt1 <- proc.time()
      cat("lambda ", round(lambda[iter, ], 4))
      cat(", total time", (tt1 - tt0)[3], "s\n")
    }
    if (stochastic) {
      return(structure(list(data = x, posteriors = sumpost/iter, 
                            lambda = lambda, bandwidth = bw, 
                            blockid = u, lambdahat = colMeans(lambda),
                            loglik = loglik), 
                       class="npEM"))
    }
    else {
      return(structure(list(data = x, posteriors = z.hat, 
                            lambda = lambda[1:iter,], bandwidth = bw, 
                            blockid = u, lambdahat = lambda[iter,],
                            loglik = loglik),
                       class="npEM"))
    }
  }

# Not sure whether the following function is really necessary:
npEMindrepbw <- function (x, mu0, blockid = 1:ncol(x), bw =
                            bw.nrd0(as.vector(as.matrix(x))), eps = 1e-08, 
                          maxiter = 500, stochastic = FALSE, verb = TRUE){
  npEM(x=x, mu0=mu0, blockid=blockid, bw=bw, samebw=FALSE, eps=eps,
       maxiter=maxiter, stochastic=stochastic, verb=verb)
}

Try the mixtools package in your browser

Any scripts or data that you put into this service are public.

mixtools documentation built on Dec. 5, 2022, 5:23 p.m.