Nothing
#' @title EBLUPs under Multivariate Fay Herriot Model
#' @description This function produces EBLUPs, MSE of Multivariate SAE
#' @param formula List of formula that describe the fitted model
#' @param vardir Sampling variances of direct estimations,if it is included in data frame so it is the vector with the name of sampling variances.if it is not, it is a data frame of sampling variance in order : \code{var1, cov12,.,cov1r,var2,cov23,.,cov2r,.,cov(r-1)(r),var(r)}
#' @param samevar Whether the variances of the data are same or not. Logical input with default \code{FALSE}
#' @param MAXITER Maximum number of iteration in Fisher-scoring algorithm with default \code{100}
#' @param PRECISION Limit of Fisher-scoring convergence tolerance with default \code{1e-4}
#' @param data The data frame
#'
#' @return This function returns a list of the following objects:
#' \item{MSAE_Eblup}{A dataframe with the values of the EBLUPs estimators}
#' \item{MSE_Eblup}{A dataframe with the values of estimated mean square errors of EBLUPs estimators}
#' \item{randomEffect}{A dataframe with the values of the random effect estimators}
#' \item{Rmatrix}{A block diagonal matrix composed of sampling errors}
#' \item{fit}{A list containing the following objects:}
#' \itemize{
#' \item method : The fitting method (this function is using "REML")
#' \item convergence : The convergence result of Fisher-scoring algorithm (Logical Value)
#' \item iterations : The number of Fisher-Scoring algorithm iterations
#' \item estcoef : A dataframe with the estimated model coefficient, standard error,t statistics, p-values of the significance of each coefficient
#' \item refvar : A dataframe with estimated random effect variances
#' \item informationFisher : A matrix of information fisher from Fisher-scoring algorithm
#' }
#'
#' @examples
#' ##load dataset
#' data(datamsaeDB)
#'
#' #Compute Fitted model for Y1, Y2, and Y3
#' #Y1 ~ X1 + X2
#' #Y2 ~ X2
#' #Y3 ~ X1
#'
#' ##Using parameter 'data'
#' formula = list(f1 = Y1~X1+X2,
#' f2 = Y2~X2,
#' f3 = Y3~X1)
#' vardir = c("v1","v12","v13","v2","v23","v3")
#' msaeFH <- msaefh(formula, vardir, data=datamsaeDB)
#'
#' #Do not use parameter 'data'
#' formula = list(f1 = datamsaeDB$Y1~datamsaeDB$X1+datamsaeDB$X2,
#' f2 = datamsaeDB$Y2~datamsaeDB$X2,
#' f3 = datamsaeDB$Y3~datamsaeDB$X1)
#' vardir = datamsaeDB[,c("v1","v12","v13","v2","v23","v3")]
#' msaeFH_d <- msaefh(formula, vardir)
#'
#' msaeFH$MSAE_Eblup #to see EBLUP Estimators
#' msaeFH$MSE_Eblup #to see estimated MSE of EBLUP estimators
#'
#' @export msaefh
#'
msaefh <- function (formula, vardir, samevar = FALSE, MAXITER = 100, PRECISION = 1e-04,
data) {
result = list(MSAE_Eblup = NA, MSE_Eblup = NA, randomEffect = NA, Rmatrix = NA,
fit = list(method = NA, convergence = NA, iterations = NA,
estcoef = NA, refvar = NA, informationFisher = NA))
if (length(formula)<=1){
stop("this msaefh() function is used for at least 2 response variables, numbers of your response variables is ",length(formula),". use saefh() function instead")
}
r <- length(formula)
RIn_function <- function(vardir, n,r){
it <- 0
it2 <- 0
RIn <- list()
rmat2 <- matrix(0,n,n)
for (i in 1:r){
for (j in 1:r){
it <- it +1
if (i>j){
RIn[[it+it2]] <- rmat2
it <- it-1
it2 <- it2+1
}else { RIn[[it+it2]] <- diag(vardir[,it])
}
}
}
RIN <- list()
for ( i in 1:r){
if (i == 1){
RIN[[i]] <- RIn[[i]]
for (j in 1:(r-1)){
RIN[[i]] <- cbind(RIN[[i]],RIn[[j+1]])
}
} else {
RIN[[i]] <- RIn[[i*r-r+1]]
for (j in 1:(r-1)){
RIN[[i]] <- cbind(RIN[[i]],RIn[[(i*r-r+1)+j]])
}
}
}
RR <- do.call(rbind,RIN)
RR <- (t(RR)+RR)*(matrix(1,n*r,n*r)-diag(0.5,n*r))
RIn<- return(RR)
}
if (!missing(data)) {
formuladata <- formula
for(i in 1:r) {formuladata[[i]] <- model.frame(formula[[i]], na.action = na.omit, data)}
y.vec <- unlist(lapply(formuladata, function(x){x[1][1]}))
x.matrix <- formula
for(i in 1:r) {x.matrix[[i]] <- model.matrix(formula[[i]], na.action = na.omit, data)}
x.matrix = Reduce(adiag,x.matrix)
n = length(y.vec)/r
if (any(is.na(data[, vardir])))
stop("Object vardir contains NA values.")
if (!all(vardir %in% names(data)))
stop("Object vardir is not appropiate with data")
if (length(vardir) != sum(1:r))
stop("Length of vardir is not appropiate, the length must be ", sum(1:r))
RIn = RIn_function(data[, vardir],n,r)
} else {
formuladata <- formula
for(i in 1:r) {formuladata[[i]] <- model.frame(formula[[i]], na.action = na.omit)}
y.vec <- unlist(lapply(formuladata, function(x){x[1][1]}))
x.matrix <- formula
for(i in 1:r) {x.matrix[[i]] <- model.matrix(formula[[i]], na.action = na.omit)}
x.matrix = Reduce(adiag,x.matrix)
n = length(y.vec)/r
if ((dim(vardir)[2] != sum(1:r)) && (dim(vardir)[1] != n)) {
stop("Object vardir is not appropiate with data, it must be ",n," x ",sum(1:r)," matrix")
}
if (any(is.na(vardir))){
stop("Object vardir contains NA values.")}
RIn = RIn_function(vardir,n, r)
}
for (i in 1:r) {
if (attr(attributes(formuladata[[i]])$terms, "response") ==
1)
textformula = paste(formula[[i]][2], formula[[i]][1],
formula[[i]][3])
else textformula = paste(formula[[i]][1], formula[[i]][2])
if (length(na.action(formuladata[[i]])) > 0) {
stop("Argument formula= ", textformula, " contains NA values.")
}
}
varnames_Y <- lapply(formula, function(x) {x[[2]]})
In = diag(n)
Ir = diag(r)
d.sigma <- lapply(formula, function(x){x=matrix(0,r,r)})
for (i in 1:r) {d.sigma[[i]][i, i] = 1}
d.SIGMA <- lapply(d.sigma, function(x){kronecker(x,In)})
convergence = TRUE
if (samevar) {
Varu <- median(diag(RIn))
k <- 0
diff <- rep(PRECISION + 1, r)
while (any(diff > PRECISION) & (k < MAXITER)) {
Varu1<- Varu
G <- kronecker(Varu, Ir)
GIn <- kronecker(G, In)
SIGMA<- (GIn + RIn)
SIGMA_inv <- solve(SIGMA)
Xt_Si<- t(SIGMA_inv %*% x.matrix)
Q <- solve(Xt_Si %*% x.matrix,tol = 1e-30)
P <- SIGMA_inv - t(Xt_Si) %*% Q %*% Xt_Si
Py <- P %*% y.vec
s <- (-0.5) * sum(diag(P)) + 0.5 * (t(Py) %*% Py)
F <- 0.5 * sum(diag(P %*% P))
Varu <- Varu1 + solve(F) %*% s
diff <- abs((Varu - Varu1)/Varu1)
k <- k + 1
}
Varu = as.vector((rep(max(Varu,0), r)))
names(Varu) = varnames_Y
if (k >= MAXITER && diff >= PRECISION) {
convergence = FALSE
}
GIn <- kronecker(diag(Varu), In)
SIGMA <- (GIn + RIn)
SIGMA_inv <- solve(SIGMA)
Xt_Si <- t(SIGMA_inv %*% x.matrix)
Q <- solve(Xt_Si %*% x.matrix)
P <- SIGMA_inv - t(Xt_Si) %*% Q %*% Xt_Si
Py <- P %*% y.vec
beta.REML <- Q %*% Xt_Si %*% y.vec
resid <- y.vec - x.matrix %*% beta.REML
MSAE_Eblup<- data.frame(matrix(x.matrix %*% beta.REML + GIn %*% SIGMA_inv %*% resid, n, r))
colnames(MSAE_Eblup) = varnames_Y
std.err.beta <- sqrt(diag(Q))
tvalue <- beta.REML/std.err.beta
pvalue <- 2 * pnorm(abs(tvalue), lower.tail = FALSE)
coef <- cbind(beta.REML, std.err.beta, tvalue, pvalue)
colnames(coef) = c("beta", "std.error", "t.statistics","p.value")
Bi <- RIn%*%solve(SIGMA)
m <- dim(x.matrix)[1]
p <- dim(x.matrix)[2]
I <- diag(m)
g1d <- diag(Bi%*%GIn)
g2d <- diag(Bi%*%x.matrix%*%Q%*%t(x.matrix)%*%t(Bi))
dg <- SIGMA_inv - (I-Bi) %*% SIGMA_inv
g3d <- diag(dg %*% SIGMA %*% t(dg))/F
MSE_Eblup <- g1d + g2d + 2 * g3d
MSE_Eblup <- data.frame(matrix(MSE_Eblup, n, r))
names(MSE_Eblup) = varnames_Y
} else {
Varu <- apply(matrix(diag(RIn), n, r), 2, median)
k <- 0
diff <- rep(PRECISION + 1, r)
while (any(diff > rep(PRECISION, r)) & (k < MAXITER)) {
Varu1 <- Varu
G <- diag(as.vector(Varu1))
GIn <- kronecker(G, In)
SIGMA <- GIn + RIn
SIGMA_inv <- solve(SIGMA)
Xt_Si <- t(SIGMA_inv %*% x.matrix)
Q <- solve(Xt_Si %*% x.matrix)
P <- SIGMA_inv - t(Xt_Si) %*% Q %*% Xt_Si
Py <- P %*% y.vec
s <- vector()
for (i in 1:r){s[i] <- (-0.5) * sum(diag(P %*% d.SIGMA[[i]])) + 0.5 * (t(Py) %*% d.SIGMA[[i]] %*% Py)}
F <- matrix(NA,r,r)
for (i in 1:r){
for (j in 1:r){
F[j,i] <- 0.5*sum(diag(P %*% d.SIGMA[[i]] %*% P %*% d.SIGMA[[j]]))
}
}
Varu <- Varu1 + solve(F) %*% s
diff <- abs((Varu - Varu1)/Varu1)
k <- k + 1
}
Varu <- as.vector(sapply(Varu, max,0))
names(Varu) = varnames_Y
if (k >= MAXITER && diff >= PRECISION) {
convergence = FALSE
}
G <- diag(as.vector(Varu))
GIn <- kronecker(G, In)
SIGMA <- GIn + RIn
SIGMA_inv <- solve(SIGMA)
Xt_Si <- t(SIGMA_inv %*% x.matrix)
Q <- solve(Xt_Si %*% x.matrix)
P <- SIGMA_inv - t(Xt_Si) %*% Q %*% Xt_Si
Py <- P %*% y.vec
beta.REML <- Q %*% Xt_Si %*% y.vec
resid <- y.vec - x.matrix %*% beta.REML
MSAE_Eblup <- data.frame(matrix(x.matrix %*% beta.REML +GIn %*% SIGMA_inv %*% resid, n, r))
colnames(MSAE_Eblup) = varnames_Y
std.err.beta <- sqrt(diag(Q))
tvalue <- beta.REML/std.err.beta
pvalue <- 2 * pnorm(abs(tvalue), lower.tail = FALSE)
coef <- cbind(beta.REML, std.err.beta, tvalue, pvalue)
colnames(coef)= c("beta", "std.error", "t.statistics","p.value")
F_inv <- solve(F)
Bi <- RIn%*%solve(SIGMA)
m <- dim(x.matrix)[1]
p <- dim(x.matrix)[2]
I <- diag(m)
g1d <- diag(Bi%*%GIn)
g2d <- diag(Bi%*%x.matrix%*%Q%*%t(x.matrix)%*%t(Bi))
dg <- lapply(d.SIGMA, function(x) x %*% SIGMA_inv - GIn %*% SIGMA_inv %*% x %*% SIGMA_inv)
g3d = list()
for (i in 1:r) {
for (j in 1:r) {
g3d[[(i - 1) * r + j]] = F_inv[i, j] * (dg[[i]] %*% SIGMA %*% t(dg[[j]]))
}
}
g3d <- diag(Reduce("+", g3d))
MSE_Eblup <- g1d + g2d + 2 * g3d
MSE_Eblup <- data.frame(matrix(MSE_Eblup, n, r))
names(MSE_Eblup) = varnames_Y
}
randomEffect <- GIn%*%SIGMA_inv%*%resid
randomEffect <- as.data.frame(matrix(randomEffect, n, r))
names(randomEffect) <- varnames_Y
result$MSAE_Eblup = MSAE_Eblup
result$MSE_Eblup = MSE_Eblup
result$randomEffect = signif(randomEffect, digits = 5)
result$Rmatrix = signif(RIn, digits = 5)
result$fit$method = "REML"
result$fit$convergence = convergence
result$fit$iterations = k
result$fit$estcoef = signif(coef, digits = 5)
result$fit$refvar = signif(data.frame(t(Varu)), digits = 5)
result$fit$informationFisher = signif(F, digits = 5)
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.