Nothing
###
### R routines for the R package mvmeta (c)
#
mvmeta.ml <-
function(Xlist, ylist, Slist, nalist, k, m, p, nall, bscov, control, ...) {
#
################################################################################
#
# DEFINE THE PARAMETERS DEPENDING ON STRUCTURE AND PARAMETERIZATION
par <- initpar(Xlist,ylist,Slist,nalist,k,m,p,bscov,control)
#
# MAXIMIZE
fn <- mlprof.fn
gr <- if(bscov=="unstr") mlprof.gr else NULL
# NB: ARGUMENT CONTROL NAMED DIFFERENTLY TO AVAOID CONFLICT WITH OPTIM
opt <- optim(par=par,fn=fn,gr=gr,Xlist=Xlist,ylist=ylist,Slist=Slist,
nalist=nalist,k=k,m=m,p=p,nall=nall,bscov=bscov,ctrl=control,
method="BFGS",control=control$optim,hessian=control$hessian)
#
# Psi: ESTIMATED BETWEEN-STUDY (CO)VARIANCE MATRIX
Psi <- par2Psi(opt$par,k,bscov,control)
#
# FIT BY GLS
gls <- glsfit(Xlist,ylist,Slist,nalist,Psi,onlycoef=FALSE)
#
# COMPUTE (CO)VARIANCE MATRIX OF coef
qrinvtUX <- qr(gls$invtUX)
R <- qr.R(qrinvtUX)
Qty <- qr.qty(qrinvtUX,gls$invtUy)
vcov <- tcrossprod(backsolve(R,diag(1,ncol(gls$invtUX))))
#
# COMPUTE RESIDUALS (LATER), FITTED AND RANK
res <- NULL
fitted <- lapply(Xlist,"%*%",gls$coef)
rank <- qrinvtUX$rank
#
# RETURN
c(list(coefficients=gls$coef,vcov=vcov,Psi=Psi,residuals=res,
fitted.values=fitted,df.residual=nall-rank-length(par),rank=rank,
logLik=opt$value,converged=opt$convergence==0,par=opt$par),
if(!is.null(opt$hessian)) list(hessian=opt$hessian),
list(niter=opt$counts[[2]],control=control))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.