Nothing
# R Header
### Copyright (C) 2022- Torsten Hothorn
###
### This file is part of the 'mvtnorm' R add-on package.
###
### 'mvtnorm' is free software: you can redistribute it and/or modify
### it under the terms of the GNU General Public License as published by
### the Free Software Foundation, version 2.
###
### 'mvtnorm' is distributed in the hope that it will be useful,
### but WITHOUT ANY WARRANTY; without even the implied warranty of
### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
### GNU General Public License for more details.
###
### You should have received a copy of the GNU General Public License
### along with 'mvtnorm'. If not, see <http://www.gnu.org/licenses/>.
###
###
### DO NOT EDIT THIS FILE
###
### Edit 'lmvnorm_src.w' and run 'nuweb -r lmvnorm_src.w'
# ltMatrices
ltMatrices <- function(object, diag = FALSE, byrow = FALSE, names = TRUE) {
if (!is.matrix(object))
object <- matrix(object, ncol = 1L)
# ltMatrices input
if (is.ltMatrices(object)) {
cls <- class(object) ### keep inheriting classes
ret <- .reorder(object, byrow = byrow)
class(ret) <- class(object)
return(ret)
}
# ltMatrices dim
J <- floor((1 + sqrt(1 + 4 * 2 * nrow(object))) / 2 - diag)
if (nrow(object) != J * (J - 1) / 2 + diag * J)
stop("Dimension of object does not correspond to lower
triangular part of a square matrix")
# ltMatrices names
nonames <- FALSE
if (!isTRUE(names)) {
if (is.character(names))
stopifnot(is.character(names) &&
length(unique(names)) == J)
else
nonames <- TRUE
} else {
names <- as.character(1:J)
}
if (!nonames) {
L1 <- matrix(names, nrow = J, ncol = J)
L2 <- matrix(names, nrow = J, ncol = J, byrow = TRUE)
L <- matrix(paste(L1, L2, sep = "."), nrow = J, ncol = J)
if (byrow)
rownames(object) <- t(L)[upper.tri(L, diag = diag)]
else
rownames(object) <- L[lower.tri(L, diag = diag)]
} # else { ### add later
# warning("ltMatrices objects should be properly named")
# }
attr(object, "J") <- J
attr(object, "diag") <- diag
attr(object, "byrow") <- byrow
attr(object, "rcnames") <- names
class(object) <- c("ltMatrices", class(object))
object
}
# syMatrices
as.syMatrices <- function(x) {
if (is.syMatrices(x))
return(x)
x <- as.ltMatrices(x) ### make sure "ltMatrices"
### is first class
class(x)[1L] <- "syMatrices"
return(x)
}
syMatrices <- function(object, diag = FALSE, byrow = FALSE, names = TRUE)
as.syMatrices(ltMatrices(object = object, diag = diag, byrow = byrow,
names = names))
# dim ltMatrices
dim.ltMatrices <- function(x) {
J <- attr(x, "J")
return(c(attr(x, "dim")[2L], J, J)) ### ncol(unclass(x)) may trigger gc
}
dim.syMatrices <- dim.ltMatrices
# dimnames ltMatrices
dimnames.ltMatrices <- function(x)
return(list(attr(x, "dimnames")[[2L]], attr(x, "rcnames"), attr(x, "rcnames")))
dimnames.syMatrices <- dimnames.ltMatrices
# names ltMatrices
names.ltMatrices <- function(x) {
return(attr(x, "dimnames")[[1L]])
}
names.syMatrices <- names.ltMatrices
# is.ltMatrices
is.ltMatrices <- function(x) inherits(x, "ltMatrices")
is.syMatrices <- function(x) inherits(x, "syMatrices")
as.ltMatrices <- function(x) UseMethod("as.ltMatrices")
as.ltMatrices.syMatrices <- function(x) {
cls <- class(x)
class(x) <- cls[which(cls == "syMatrices"):length(cls)]
class(x)[1L] <- "ltMatrices"
return(x)
}
as.ltMatrices.ltMatrices <- function(x) {
cls <- class(x)
class(x) <- cls[which(cls == "ltMatrices"):length(cls)]
return(x)
}
# as.ltMatrices
as.ltMatrices.default <- function(x) {
stopifnot(is.numeric(x))
if (!is.matrix(x)) x <- matrix(x)
DIAG <- max(abs(diag(x) - 1)) > .Machine$double.eps
DIAG <- DIAG & (nrow(x) > 1)
lt <- x[lower.tri(x, diag = DIAG)]
up <- x[upper.tri(x, diag = FALSE)]
stopifnot(max(abs(up)) < .Machine$double.eps)
nm <- rownames(x)
if (!is.null(nm))
return(ltMatrices(lt, diag = DIAG, names = nm))
return(ltMatrices(lt, diag = DIAG))
}
# print ltMatrices
as.array.ltMatrices <- function(x, symmetric = FALSE, ...) {
# extract slots
diag <- attr(x, "diag")
byrow <- attr(x, "byrow")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
x <- unclass(x)
L <- matrix(1L, nrow = J, ncol = J)
diag(L) <- 2L
if (byrow) {
L[upper.tri(L, diag = diag)] <- floor(2L + 1:(J * (J - 1) / 2L + diag * J))
L <- t(L)
} else {
L[lower.tri(L, diag = diag)] <- floor(2L + 1:(J * (J - 1) / 2L + diag * J))
}
if (symmetric) {
L[upper.tri(L)] <- 0L
dg <- diag(L)
L <- L + t(L)
diag(L) <- dg
}
ret <- rbind(0, 1, x)[c(L), , drop = FALSE]
class(ret) <- "array"
dim(ret) <- d[3:1]
dimnames(ret) <- dn[3:1]
return(ret)
}
as.array.syMatrices <- function(x, ...)
return(as.array.ltMatrices(x, symmetric = TRUE))
print.ltMatrices <- function(x, ...)
print(as.array(x))
print.syMatrices <- function(x, ...)
print(as.array(x))
# reorder ltMatrices
.reorder <- function(x, byrow = FALSE) {
stopifnot(is.ltMatrices(x))
if (attr(x, "byrow") == byrow) return(x)
# extract slots
diag <- attr(x, "diag")
byrow <- attr(x, "byrow")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
x <- unclass(x)
rL <- cL <- diag(0, nrow = J)
rL[lower.tri(rL, diag = diag)] <- cL[upper.tri(cL, diag = diag)] <- 1:nrow(x)
cL <- t(cL)
if (byrow) ### row -> col order
return(ltMatrices(x[cL[lower.tri(cL, diag = diag)], , drop = FALSE],
diag = diag, byrow = FALSE, names = dn[[2L]]))
### col -> row order
return(ltMatrices(x[t(rL)[upper.tri(rL, diag = diag)], , drop = FALSE],
diag = diag, byrow = TRUE, names = dn[[2L]]))
}
# subset ltMatrices
# .subset ltMatrices
.subset_ltMatrices <- function(x, i, j, ..., drop = FALSE) {
if (drop) warning("argument drop is ignored")
if (missing(i) && missing(j)) return(x)
# extract slots
diag <- attr(x, "diag")
byrow <- attr(x, "byrow")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
x <- unclass(x)
if (!missing(j)) {
if (is.character(j)) {
stopifnot(all(j %in% dn[[2L]]))
j <- match(j, dn[[2L]])
}
j <- (1:J)[j] ### get rid of negative indices
if (length(j) == 1L && !diag) {
return(ltMatrices(matrix(1, ncol = ncol(x), nrow = 1), diag = TRUE,
byrow = byrow, names = dn[[2L]][j]))
}
L <- diag(0L, nrow = J)
Jp <- sum(upper.tri(L, diag = diag))
if (byrow) {
L[upper.tri(L, diag = diag)] <- 1:Jp
L <- L + t(L)
diag(L) <- diag(L) / 2
L <- L[j, j, drop = FALSE]
L <- L[upper.tri(L, diag = diag)]
} else {
L[lower.tri(L, diag = diag)] <- 1:Jp
L <- L + t(L)
diag(L) <- diag(L) / 2
L <- L[j, j, drop = FALSE]
L <- L[lower.tri(L, diag = diag)]
}
if (missing(i)) {
return(ltMatrices(x[c(L), , drop = FALSE], diag = diag,
byrow = byrow, names = dn[[2L]][j]))
}
return(ltMatrices(x[c(L), i, drop = FALSE], diag = diag,
byrow = byrow, names = dn[[2L]][j]))
}
return(ltMatrices(x[, i, drop = FALSE], diag = diag,
byrow = byrow, names = dn[[2L]]))
}
### if j is not ordered, result is not a lower triangular matrix
"[.ltMatrices" <- function(x, i, j, ..., drop = FALSE) {
if (!missing(j)) {
if (is.character(j)) {
stopifnot(all(j %in% dimnames(x)[[2L]]))
j <- match(j, dimnames(x)[[2L]])
}
if (all(j > 0)) {
if (any(diff(j) < 0)) stop("invalid subset argument j")
}
}
return(.subset_ltMatrices(x = x, i = i, j = j, ..., drop = drop))
}
"[.syMatrices" <- function(x, i, j, ..., drop = FALSE) {
x <- as.syMatrices(x)
ret <- .subset_ltMatrices(x = x, i = i, j = j, ..., drop = drop)
class(ret)[1L] <- "syMatrices"
ret
}
# lower triangular elements
Lower_tri <- function(x, diag = FALSE, byrow = attr(x, "byrow")) {
if (is.syMatrices(x))
x <- as.ltMatrices(x)
adiag <- diag
x <- ltMatrices(x, byrow = byrow)
# extract slots
diag <- attr(x, "diag")
byrow <- attr(x, "byrow")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
if (diag == adiag)
return(unclass(x)[,,drop = FALSE]) ### remove attributes
if (!diag && adiag) {
diagonals(x) <- 1
return(unclass(x)[,,drop = FALSE]) ### remove attributes
}
x <- unclass(x)
if (J == 1) {
idx <- 1L
} else {
if (byrow)
idx <- cumsum(c(1, 2:J))
else
idx <- cumsum(c(1, J:2))
}
return(x[-idx,,drop = FALSE])
}
# diagonals ltMatrices
diagonals <- function(x, ...)
UseMethod("diagonals")
diagonals.ltMatrices <- function(x, ...) {
# extract slots
diag <- attr(x, "diag")
byrow <- attr(x, "byrow")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
x <- unclass(x)
if (!diag) {
ret <- matrix(1, nrow = J, ncol = ncol(x))
colnames(ret) <- dn[[1L]]
rownames(ret) <- dn[[2L]]
return(ret)
} else {
if (J == 1L) return(x)
if (byrow)
idx <- cumsum(c(1, 2:J))
else
idx <- cumsum(c(1, J:2))
ret <- x[idx, , drop = FALSE]
rownames(ret) <- dn[[2L]]
return(ret)
}
}
diagonals.syMatrices <- diagonals.ltMatrices
diagonals.matrix <- function(x, ...) diag(x)
# diagonal matrix
diagonals.integer <- function(x, ...)
ltMatrices(rep(0, x * (x - 1) / 2), diag = FALSE, ...)
# mult ltMatrices
### C %*% y
Mult <- function(x, y, ...)
UseMethod("Mult")
Mult.default <- function(x, y, transpose = FALSE, ...) {
if (!transpose) return(x %*% y)
return(crossprod(x, y))
}
Mult.ltMatrices <- function(x, y, transpose = FALSE, ...) {
# extract slots
diag <- attr(x, "diag")
byrow <- attr(x, "byrow")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
stopifnot(is.numeric(y))
if (!is.matrix(y)) y <- matrix(y, nrow = d[2L], ncol = d[1L])
N <- ifelse(d[1L] == 1, ncol(y), d[1L])
stopifnot(nrow(y) == d[2L])
if (ncol(y) != N)
return(sapply(1:ncol(y), function(i) Mult(x, y[,i], transpose = transpose)))
# mult ltMatrices transpose
if (transpose) {
x <- ltMatrices(x, byrow = FALSE)
if (!is.double(x)) storage.mode(x) <- "double"
if (!is.double(y)) storage.mode(y) <- "double"
ret <- .Call(mvtnorm_R_ltMatrices_Mult_transpose, x, y, as.integer(N),
as.integer(d[2L]), as.logical(diag))
rownames(ret) <- dn[[2L]]
if (length(dn[[1L]]) == N)
colnames(ret) <- dn[[1L]]
return(ret)
}
x <- ltMatrices(x, byrow = TRUE)
if (!is.double(x)) storage.mode(x) <- "double"
if (!is.double(y)) storage.mode(y) <- "double"
ret <- .Call(mvtnorm_R_ltMatrices_Mult, x, y, as.integer(N),
as.integer(d[2L]), as.logical(diag))
rownames(ret) <- dn[[2L]]
if (length(dn[[1L]]) == N)
colnames(ret) <- dn[[1L]]
return(ret)
}
# mult syMatrices
Mult.syMatrices <- function(x, y, ...) {
# extract slots
diag <- attr(x, "diag")
byrow <- attr(x, "byrow")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
x <- as.ltMatrices(x)
stopifnot(is.numeric(y))
if (!is.matrix(y)) y <- matrix(y, nrow = d[2L], ncol = d[1L])
N <- ifelse(d[1L] == 1, ncol(y), d[1L])
stopifnot(nrow(y) == d[2L])
stopifnot(ncol(y) == N)
ret <- Mult(x, y) + Mult(x, y, transpose = TRUE) - y * c(diagonals(x))
return(ret)
}
# solve ltMatrices
solve.ltMatrices <- function(a, b, transpose = FALSE, ...) {
byrow_orig <- attr(a, "byrow")
x <- ltMatrices(a, byrow = FALSE)
diag <- attr(x, "diag")
### dtptri and dtpsv require diagonal elements being present
if (!diag) diagonals(x) <- diagonals(x)
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
if (!is.double(x)) storage.mode(x) <- "double"
if (!missing(b)) {
if (!is.matrix(b)) b <- matrix(b, nrow = J, ncol = d[1L])
stopifnot(nrow(b) == J)
N <- ifelse(d[1L] == 1, ncol(b), d[1L])
stopifnot(ncol(b) == N)
if (!is.double(b)) storage.mode(b) <- "double"
ret <- .Call(mvtnorm_R_ltMatrices_solve, x, b,
as.integer(N), as.integer(J), as.logical(diag),
as.logical(transpose))
if (d[1L] == N) {
colnames(ret) <- dn[[1L]]
} else {
colnames(ret) <- colnames(b)
}
rownames(ret) <- dn[[2L]]
return(ret)
}
if (transpose) stop("cannot compute inverse of t(a)")
ret <- .Call(mvtnorm_R_ltMatrices_solve_C, x,
as.integer(d[1L]), as.integer(J), as.logical(diag),
as.logical(FALSE))
colnames(ret) <- dn[[1L]]
if (!diag)
### ret always includes diagonal elements, remove here
ret <- ret[- cumsum(c(1, J:2)), , drop = FALSE]
ret <- ltMatrices(ret, diag = diag, byrow = FALSE, names = dn[[2L]])
ret <- ltMatrices(ret, byrow = byrow_orig)
return(ret)
}
# logdet ltMatrices
logdet <- function(x) {
if (!is.ltMatrices(x))
stop("x is not an ltMatrices object")
byrow <- attr(x, "byrow")
diag <- attr(x, "diag")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
if (!is.double(x)) storage.mode(x) <- "double"
ret <- .Call(mvtnorm_R_ltMatrices_logdet, x,
as.integer(d[1L]), as.integer(J), as.logical(diag),
as.logical(byrow))
names(ret) <- dn[[1L]]
return(ret)
}
# tcrossprod ltMatrices
### C %*% t(C) => returns object of class syMatrices
### diag(C %*% t(C)) => returns matrix of diagonal elements
.Tcrossprod <- function(x, diag_only = FALSE, transpose = FALSE) {
if (!is.ltMatrices(x)) {
ret <- tcrossprod(x)
if (diag_only) ret <- diag(ret)
return(ret)
}
byrow_orig <- attr(x, "byrow")
diag <- attr(x, "diag")
d <- dim(x)
N <- d[1L]
J <- d[2L]
dn <- dimnames(x)
x <- ltMatrices(x, byrow = FALSE)
if (!is.double(x)) storage.mode(x) <- "double"
ret <- .Call(mvtnorm_R_ltMatrices_tcrossprod, x, as.integer(N), as.integer(J),
as.logical(diag), as.logical(diag_only), as.logical(transpose))
colnames(ret) <- dn[[1L]]
if (diag_only) {
rownames(ret) <- dn[[2L]]
} else {
ret <- ltMatrices(ret, diag = TRUE, byrow = FALSE, names = dn[[2L]])
ret <- as.syMatrices(ltMatrices(ret, byrow = byrow_orig))
}
return(ret)
}
Tcrossprod <- function(x, diag_only = FALSE)
.Tcrossprod(x = x, diag_only = diag_only, transpose = FALSE)
# crossprod ltMatrices
Crossprod <- function(x, diag_only = FALSE)
.Tcrossprod(x, diag_only = diag_only, transpose = TRUE)
# chol syMatrices
chol.syMatrices <- function(x, ...) {
byrow_orig <- attr(x, "byrow")
dnm <- dimnames(x)
stopifnot(attr(x, "diag"))
d <- dim(x)
### x is of class syMatrices, coerse to ltMatrices first and re-arrange
### second
x <- ltMatrices(unclass(x), diag = TRUE,
byrow = byrow_orig, names = dnm[[2L]])
x <- ltMatrices(x, byrow = FALSE)
# class(x) <- class(x)[-1]
if (!is.double(x)) storage.mode(x) <- "double"
ret <- .Call(mvtnorm_R_syMatrices_chol, x,
as.integer(d[1L]), as.integer(d[2L]))
colnames(ret) <- dnm[[1L]]
ret <- ltMatrices(ret, diag = TRUE,
byrow = FALSE, names = dnm[[2L]])
ret <- ltMatrices(ret, byrow = byrow_orig)
return(ret)
}
# add diagonal elements
.adddiag <- function(x) {
stopifnot(is.ltMatrices(x))
if (attr(x, "diag")) return(x)
byrow_orig <- attr(x, "byrow")
x <- ltMatrices(x, byrow = FALSE)
N <- dim(x)[1L]
J <- dim(x)[2L]
nm <- dimnames(x)[[2L]]
L <- diag(J)
L[lower.tri(L, diag = TRUE)] <- 1:(J * (J + 1) / 2)
D <- diag(J)
ret <- matrix(D[lower.tri(D, diag = TRUE)],
nrow = J * (J + 1) / 2, ncol = N)
colnames(ret) <- dimnames(x)[[1L]]
ret[L[lower.tri(L, diag = FALSE)],] <- unclass(x)
ret <- ltMatrices(ret, diag = TRUE, byrow = FALSE, names = nm)
ret <- ltMatrices(ret, byrow = byrow_orig)
ret
}
# assign diagonal elements
"diagonals<-" <- function(x, value)
UseMethod("diagonals<-")
"diagonals<-.ltMatrices" <- function(x, value) {
# extract slots
diag <- attr(x, "diag")
byrow <- attr(x, "byrow")
d <- dim(x)
J <- d[2L]
dn <- dimnames(x)
if (byrow)
idx <- cumsum(c(1, 2:J))
else
idx <- cumsum(c(1, J:2))
### diagonals(x) <- NULL returns ltMatrices(..., diag = FALSE)
if (is.null(value)) {
if (!attr(x, "diag")) return(x)
if (J == 1L) {
x[] <- 1
return(x)
}
return(ltMatrices(unclass(x)[-idx,,drop = FALSE], diag = FALSE,
byrow = byrow, names = dn[[2L]]))
}
x <- .adddiag(x)
if (!is.matrix(value))
value <- matrix(value, nrow = J, ncol = d[1L])
stopifnot(is.matrix(value) && nrow(value) == J
&& ncol(value) == d[1L])
if (J == 1L) {
x[] <- value
return(x)
}
x[idx, ] <- value
return(x)
}
"diagonals<-.syMatrices" <- function(x, value) {
x <- as.ltMatrices(x)
diagonals(x) <- value
class(x)[1L] <- "syMatrices"
return(x)
}
# kronecker vec trick
vectrick <- function(C, S, A, transpose = c(TRUE, TRUE)) {
stopifnot(all(is.logical(transpose)))
stopifnot(length(transpose) == 2L)
# check C argument
C <- as.ltMatrices(C)
if (!attr(C, "diag")) diagonals(C) <- 1
C_byrow_orig <- attr(C, "byrow")
C <- ltMatrices(C, byrow = FALSE)
dC <- dim(C)
nm <- attr(C, "rcnames")
N <- dC[1L]
J <- dC[2L]
class(C) <- class(C)[-1L] ### works because of as.ltMatrices(c)
if (!is.double(C)) storage.mode(C) <- "double"
# check S argument
SltM <- is.ltMatrices(S)
if (SltM) {
if (!attr(S, "diag")) diagonals(S) <- 1
S_byrow_orig <- attr(S, "byrow")
stopifnot(S_byrow_orig == C_byrow_orig)
S <- ltMatrices(S, byrow = FALSE)
dS <- dim(S)
stopifnot(dC[2L] == dS[2L])
if (dC[1] != 1L) {
stopifnot(dC[1L] == dS[1L])
} else {
N <- dS[1L]
}
## argument A in dtrmm is not in packed form, so expand in J x J
## matrix
S <- matrix(as.array(S), ncol = dS[1L])
} else {
stopifnot(is.matrix(S))
stopifnot(nrow(S) == J^2)
if (dC[1] != 1L) {
stopifnot(dC[1L] == ncol(S))
} else {
N <- ncol(S)
}
}
if (!is.double(S)) storage.mode(S) <- "double"
# check A argument
if (missing(A)) {
A <- C
} else {
A <- as.ltMatrices(A)
if (!attr(A, "diag")) diagonals(A) <- 1
A_byrow_orig <- attr(A, "byrow")
stopifnot(C_byrow_orig == A_byrow_orig)
A <- ltMatrices(A, byrow = FALSE)
dA <- dim(A)
stopifnot(dC[2L] == dA[2L])
class(A) <- class(A)[-1L]
if (!is.double(A)) storage.mode(A) <- "double"
if (dC[1L] != dA[1L]) {
if (dC[1L] == 1L)
C <- C[, rep(1, N), drop = FALSE]
if (dA[1L] == 1L)
A <- A[, rep(1, N), drop = FALSE]
stopifnot(ncol(A) == ncol(C))
}
}
ret <- .Call(mvtnorm_R_vectrick, C, as.integer(N), as.integer(J), S, A,
as.logical(TRUE), as.logical(transpose))
if (!SltM) return(matrix(c(ret), ncol = N))
L <- matrix(1:(J^2), nrow = J)
ret <- ltMatrices(ret[L[lower.tri(L, diag = TRUE)],,drop = FALSE],
diag = TRUE, byrow = FALSE, names = nm)
ret <- ltMatrices(ret, byrow = C_byrow_orig)
return(ret)
}
# convenience functions
# chol classes
is.chol <- function(x) inherits(x, "chol")
as.chol <- function(x) {
stopifnot(is.ltMatrices(x))
if (is.chol(x)) return(x)
if (is.invchol(x))
return(invchol2chol(x))
class(x) <- c("chol", class(x))
return(x)
}
is.invchol <- function(x) inherits(x, "invchol")
as.invchol <- function(x) {
stopifnot(is.ltMatrices(x))
if (is.invchol(x)) return(x)
if (is.chol(x))
return(chol2invchol(x))
class(x) <- c("invchol", class(x))
return(x)
}
# D times C
Dchol <- function(x, D = 1 / sqrt(Tcrossprod(x, diag_only = TRUE))) {
if (is.invchol(x)) stop("Dchol cannot work with invchol objects")
x <- .adddiag(x)
byrow_orig <- attr(x, "byrow")
x <- ltMatrices(x, byrow = TRUE)
N <- dim(x)[1L]
J <- dim(x)[2L]
nm <- dimnames(x)[[2L]]
### for some parameter configurations logdet(ret) would
### be -Inf; make sure this does't happen
if (any(D < .Machine$double.eps))
D[D < .Machine$double.eps] <- 2 * .Machine$double.eps
x <- unclass(x) * D[rep(1:J, 1:J),,drop = FALSE]
ret <- ltMatrices(x, diag = TRUE, byrow = TRUE, names = nm)
ret <- as.chol(ltMatrices(ret, byrow = byrow_orig))
return(ret)
}
# L times D
### invcholD = solve(Dchol)
invcholD <- function(x, D = sqrt(Tcrossprod(solve(x), diag_only = TRUE))) {
if (is.chol(x)) stop("invcholD cannot work with chol objects")
x <- .adddiag(x)
byrow_orig <- attr(x, "byrow")
x <- ltMatrices(x, byrow = FALSE)
N <- dim(x)[1L]
J <- dim(x)[2L]
nm <- dimnames(x)[[2L]]
### for some parameter configurations logdet(ret) would
### be -Inf; make sure this does't happen
if (any(D < .Machine$double.eps))
D[D < .Machine$double.eps] <- 2 * .Machine$double.eps
x <- unclass(x) * D[rep(1:J, J:1),,drop = FALSE]
ret <- ltMatrices(x, diag = TRUE, byrow = FALSE, names = nm)
ret <- as.invchol(ltMatrices(ret, byrow = byrow_orig))
return(ret)
}
### C -> Sigma
chol2cov <- function(x)
Tcrossprod(x)
### L -> C
invchol2chol <- function(x)
as.chol(solve(x))
### C -> L
chol2invchol <- function(x)
as.invchol(solve(x))
### L -> Sigma
invchol2cov <- function(x)
chol2cov(invchol2chol(x))
### L -> Precision
invchol2pre <- function(x)
Crossprod(x)
### C -> Precision
chol2pre <- function(x)
Crossprod(chol2invchol(x))
### C -> R
chol2cor <- function(x) {
ret <- Tcrossprod(Dchol(x))
diagonals(ret) <- NULL
return(ret)
}
### L -> R
invchol2cor <- function(x) {
ret <- chol2cor(invchol2chol(x))
diagonals(ret) <- NULL
return(ret)
}
### L -> A
invchol2pc <- function(x) {
ret <- -Crossprod(invcholD(x, D = 1 / sqrt(Crossprod(x, diag_only = TRUE))))
diagonals(ret) <- 0
ret
}
### C -> A
chol2pc <- function(x)
invchol2pc(solve(x))
# aperm
aperm.chol <- function(a, perm, ...) {
# aperm checks
J <- dim(a)[2L]
if (missing(perm)) return(a)
if (is.character(perm))
perm <- match(perm, dimnames(a)[[2L]])
stopifnot(all(perm %in% 1:J))
args <- list(...)
if (length(args) > 0L)
warning("Additional arguments", names(args), "ignored")
return(as.chol(chol(chol2cov(a)[,perm])))
}
aperm.invchol <- function(a, perm, ...) {
# aperm checks
J <- dim(a)[2L]
if (missing(perm)) return(a)
if (is.character(perm))
perm <- match(perm, dimnames(a)[[2L]])
stopifnot(all(perm %in% 1:J))
args <- list(...)
if (length(args) > 0L)
warning("Additional arguments", names(args), "ignored")
return(chol2invchol(chol(invchol2cov(a)[,perm])))
}
aperm.ltMatrices <- function(a, perm, ...)
stop("Cannot permute objects of class ltMatrices,
consider calling as.chol() or as.invchol() first")
aperm.syMatrices <- function(a, perm, ...)
return(a[,perm])
# marginal
marg_mvnorm <- function(chol, invchol, which = 1L) {
# mc input checks
stopifnot(xor(missing(chol), missing(invchol)))
x <- if (missing(chol)) invchol else chol
stopifnot(is.ltMatrices(x))
N <- dim(x)[1L]
J <- dim(x)[2L]
if (missing(which)) return(x)
if (is.character(which)) which <- match(which, dimnames(x)[[2L]])
stopifnot(all(which %in% 1:J))
if (which[1] == 1L && (length(which) == 1L ||
all(diff(which) == 1L))) {
### which is 1:j
tmp <- x[,which]
} else {
if (missing(chol)) x <- invchol2chol(x)
### note: aperm would work but computes
### Cholesky of J^2, here only length(which)^2
### is needed
tmp <- base::chol(chol2cov(x)[,which])
if (missing(chol)) tmp <- chol2invchol(tmp)
}
if (missing(chol))
ret <- list(invchol = tmp)
else
ret <- list(chol = tmp)
ret
}
# conditional
cond_mvnorm <- function(chol, invchol, which_given = 1L, given, center = FALSE) {
which <- which_given
# mc input checks
stopifnot(xor(missing(chol), missing(invchol)))
x <- if (missing(chol)) invchol else chol
stopifnot(is.ltMatrices(x))
N <- dim(x)[1L]
J <- dim(x)[2L]
if (missing(which)) return(x)
if (is.character(which)) which <- match(which, dimnames(x)[[2L]])
stopifnot(all(which %in% 1:J))
if (N == 1) N <- NCOL(given)
stopifnot(is.matrix(given) && nrow(given) == length(which))
# cond simple
if (which[1] == 1L && (length(which) == 1L ||
all(diff(which) == 1L))) {
### which is 1:j
L <- if (missing(invchol)) solve(chol) else invchol
tmp <- matrix(0, ncol = ncol(given), nrow = J - length(which))
centerm <- Mult(L, rbind(given, tmp))
### if ncol(given) is not N = dim(L)[1L] > 1, then
### solve() below won't work and we loop over
### columns of centerm
if (dim(L)[1L] > 1 && ncol(given) != N) {
centerm <- lapply(1:ncol(centerm), function(j)
matrix(centerm[,j], nrow = J, ncol = N)[-which,,drop = FALSE]
)
} else {
centerm <- centerm[-which,,drop = FALSE]
}
L <- L[,-which]
ct <- centerm
if (!is.matrix(ct)) ct <- do.call("rbind", ct)
if (is.matrix(centerm)) {
m <- -solve(L, centerm)
} else {
m <- do.call("rbind", lapply(centerm, function(cm) -solve(L, cm)))
}
if (missing(invchol)) {
if (center)
return(list(center = ct, chol = solve(L)))
return(list(mean = m, chol = solve(L)))
}
if (center)
return(list(center = ct, invchol = L))
return(list(mean = m, invchol = L))
}
### general with center = TRUE => permute first and go simple
if (center) {
perm <- c(which, (1:J)[!(1:J) %in% which])
if (!missing(chol))
return(cond_mvnorm(chol = aperm(as.chol(chol), perm = perm),
which_given = 1:length(which), given = given,
center = center))
return(cond_mvnorm(invchol = aperm(as.invchol(invchol), perm = perm),
which_given = 1:length(which), given = given,
center = center))
}
# cond general
stopifnot(!center)
if (!missing(chol)) ### chol is C = Cholesky of covariance
P <- Crossprod(solve(chol)) ### P = t(L) %*% L with L = C^-1
else ### invcol is L = Cholesky of precision
P <- Crossprod(invchol)
Pw <- P[, -which]
chol <- solve(base::chol(Pw))
Pa <- as.array(P)
Sa <- as.array(S <- Crossprod(chol))
if (dim(chol)[1L] == 1L) {
Pa <- Pa[,,1]
Sa <- Sa[,,1]
mean <- -Sa %*% Pa[-which, which, drop = FALSE] %*% given
} else {
if (ncol(given) == N) {
mean <- sapply(1:N, function(i)
-Sa[,,i] %*% Pa[-which,which,i] %*% given[,i,drop = FALSE])
} else { ### compare to Mult() with ncol(y) !%in% (1, N)
mean <- sapply(1:N, function(i)
-Sa[,,i] %*% Pa[-which,which,i] %*% given)
}
}
chol <- base::chol(S)
if (missing(invchol))
return(list(mean = mean, chol = chol))
return(list(mean = mean, invchol = solve(chol)))
}
# check obs
.check_obs <- function(obs, mean, J, N) {
nr <- nrow(obs)
nc <- ncol(obs)
if (nc != N)
stop("obs and (inv)chol have non-conforming size")
if (nr != J)
stop("obs and (inv)chol have non-conforming size")
if (identical(unique(mean), 0)) return(obs)
if (length(mean) == J)
return(obs - c(mean))
if (!is.matrix(mean))
stop("obs and mean have non-conforming size")
if (nrow(mean) != nr)
stop("obs and mean have non-conforming size")
if (ncol(mean) != nc)
stop("obs and mean have non-conforming size")
return(obs - mean)
}
# colSumsdnorm ltMatrices
.colSumsdnorm <- function(z) {
stopifnot(is.numeric(z))
if (!is.matrix(z))
z <- matrix(z, nrow = 1, ncol = length(z))
ret <- .Call(mvtnorm_R_ltMatrices_colSumsdnorm, z, ncol(z), nrow(z))
names(ret) <- colnames(z)
return(ret)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.