Nothing
##.nimbleProjectClassMasterList <- new.env(, emptyenv())
projectNameCreator <- labelFunctionCreator('P')
nfCompilationInfoClass <- setRefClass('nfCompilationInfoClass',
fields = list(
nfProc = 'ANY', ## an nfProcessing object
nfGenerator = 'ANY', ## a nfGenerator, which is a function with special stuff in its environment
cppDef = 'ANY', ## a cppNimbleFunctionClass object
labelMaker = 'ANY', ## a label maker function
virtual = 'ANY', #'logical',
RinitTypesProcessed = 'ANY', # 'logical', ## setupTypesForUsingFunction()
Rcompiled = 'ANY', #'logical',
written = 'ANY', #'logical',
cppCompiled = 'ANY', #'logical',
loaded = 'ANY', #'logical',
fromModel = 'ANY', #'logical',
Rinstances = 'ANY' #'list'
),
methods = list(
initialize = function(...){Rinstances <<- list(); callSuper(...)},
addRinstance = function(nfi) {Rinstances[[ length(Rinstances)+1 ]] <<- nfi},
addRinstanceList = function(nfList) {Rinstances[length(Rinstances) + seq_along(nfList)] <<- nfList}
)
)
nlCompilationInfoClass <- setRefClass('nlCompilationInfoClass',
fields = list(
nlProc = 'ANY',
cppDef = 'ANY', ## a cppNimbleFunctionClass object
written = 'ANY', #'logical'
loaded = 'ANY',
cppCompiled = 'ANY', #'logical'
labelMaker = 'ANY', ## a label maker function
RinitTypesProcessed = 'ANY', # 'logical', ## setupTypesForUsingFunction()
Rcompiled = 'ANY' # 'logical'
),
methods = list(
initialize = function(...){callSuper(...)}
)
)
mvInfoClass <- setRefClass('mvInfoClass',
fields = list(
mvConf = 'ANY', ## a custom modelValues class
cppClassName = 'ANY', #'character',
cppClass = 'ANY', ## a cppModelValuesClass object,
fromModel = 'ANY', #'logical',
RmvObjs = 'ANY' #'list'
),
methods = list(
initialize = function(...) {
RmvObjs <<- list()
callSuper(...)
},
addRmv = function(Rmv) RmvObjs[[length(RmvObjs)+1]] <<- Rmv
)
)
RCfunInfoClass <- setRefClass('RCfunInfoClass',
fields = list(
nfMethodRCobj = 'ANY', ## an mfMethodRC
RCfunProc = 'ANY', ## an RCfunProcessing or NULL
cppClass = 'ANY', ## an RCfunctionDef or NULL
RinitTypesProcessed = 'ANY',
Rcompiled = 'ANY',
fromModel = 'ANY' #'logical'
)
)
modelDefInfoClass <- setRefClass('modelDefInfoClass',
fields = list(
labelMaker = 'ANY'
)
)
compileModel_impl <- function(.self,
model,
filename,
control,
showCompilerOutput,
where) {
disableWrite <- FALSE
if(getNimbleOption('enableSpecialHandling')) {
filenames <- filenameFromSpecialHandling(model)
if(!is.null(filenames)) {
filename <- filenames$filename
nfFileName <- filenames$nfFileName
disableWrite <- TRUE
}
}
if(is.character(model)) {
tmp <- models[[model]]
if(is.null(tmp)) stop(paste0("Model provided as name: ", model, " but it is not in this project."), call. = FALSE)
model <- tmp
} else .self$addModel(model)
modelDef <- model$getModelDef()
modelDefName <- modelDef$name
Cname <- Rname2CppName(modelDefName)
if(!disableWrite) {
if(is.null(filename)) {
filename <- paste0(.self$projectName, '_', Rname2CppName(modelDefName))
}
nfFileName <- paste0(.self$projectName, '_', Rname2CppName(modelDefName),'_nfCode')
}
modelCpp <- cppBUGSmodelClass(modelDef = modelDef, model = model,
name = Cname, project = .self)
## buildAll will call back to the project to add its nimbleFunctions
modelCpp$buildAll(buildNodeDefs = TRUE, where = where, control = control)
cppProj <- cppProjectClass(dirName = .self$dirName)
.self$cppProjects[[ modelDefName ]] <- cppProj
## genModelValuesCppClass will back to the project to add its mv class
mvc <- modelCpp$genModelValuesCppClass()
##if(is.null(filename)) filename <- paste0(projectName, '_', modelDefName)
cppProj$addClass(mvc, filename = filename)
cppProj$addClass(modelCpp, modelDefName, filename)
buildDerivsForThisModel <- isTRUE(modelDef[["buildDerivs"]]) # could check getNimbleOption("enableDerivs") but why?
if(buildDerivsForThisModel) {
CnameAD <- paste0(Cname,"_AD")
modelCppAD <- cppBUGSmodelClass(modelDef = modelDef, model = model,
name = CnameAD, project = .self)
modelCppAD$CmodelValuesClassName <- paste0(modelCppAD$CmodelValuesClassName, "_AD")
modelCppAD$buildAll(buildNodeDefs = FALSE, where = where, control = control, forAD = TRUE)
modelDefNameAD <- paste0(modelDefName, "_AD")
## This ensures we don't get the same mv definition as for the regular model
mvClassName <- environment(modelDef$modelValuesClass)$className
environment(modelDef$modelValuesClass)$className <- modelCppAD$CmodelValuesClassName
mvcAD <- .self$needModelValuesCppClass(modelDef$modelValuesClass, fromModel = TRUE, forAD = TRUE)
cppProj$addClass(mvcAD, filename = filename)
cppProj$addClass(modelCppAD, modelDefNameAD, filename)
environment(modelDef$modelValuesClass)$className <- mvClassName
NULL
}
##if compileNodes
##nfFileName <- paste0(projectName, '_', Rname2CppName(modelDefName),'_nfCode')
for(i in names(modelCpp$nodeFuns)) {
cppProj$addClass(modelCpp$nodeFuns[[i]], filename = nfFileName)
}
if(control$writeFiles) {
if(!disableWrite) {
cppProj$writeFiles(filename)
cppProj$writeFiles(nfFileName) ## if compileNodes
}
} else return(cppProj)
if(control$compileCpp) {
compileList <- filename
compileList <- c(compileList, nfFileName) ## if compileNodes
cppProj$compileFile(compileList, showCompilerOutput)
} else return(cppProj)
if(control$loadSO) {
## if loadSO
cppProj$loadSO(filename)
} else return(cppProj)
## if buildInterface
interfaceName <- paste0('C', modelDefName)
compiledModel <- modelCpp ## cppProj$cppDefs[[2]]
newCall <- paste0('new_',Rname2CppName(modelDefName))
ans <- buildModelInterface(interfaceName, compiledModel, newCall,
buildDerivs = buildDerivsForThisModel,
where = where, project = .self, dll = cppProj$dll)
createModel <- TRUE
if(!createModel) return(ans) else return(ans(model, where, dll = cppProj$dll))
## creating the model populates model$CobjectInterface
}
nimbleProjectClass <- setRefClass('nimbleProjectClass',
fields = list(
RCfunInfos = 'ANY', #'list', ## a list of RCfunInfoClass objects
RCfunCppInterfaces = 'ANY', #'list',
mvInfos = 'ANY', #'list', ## a list of mvInfoClass objects
modelDefInfos = 'ANY', #'list',
models = 'ANY', #'list',
nimbleFunctions = 'ANY', #'list',
nimbleLists = 'ANY', #'list',
nfCompInfos = 'ANY', #'list', ## list of nfCompilationInfoClass objects
nlCompInfos = 'ANY', #'list', ## list of nfCompilationInfoClass objects
cppProjects = 'ANY', #'list', ## list of cppProjectClass objects, 1 for each dll to be produced
dirName = 'ANY', #'character',
nimbleLabel = 'ANY', #'character',
refClassDefsEnv = 'ANY', #'environment',
projectName = 'ANY' #'character'
),
methods = list(
show = function() {
writeLines(paste0('nimbleProject object'))
},
initialize = function(dir = NULL, name = '') {
RCfunInfos <<- new.env() # list()
RCfunCppInterfaces <<- new.env() # list()
mvInfos <<- new.env() # list()
modelDefInfos <<- new.env() # list()
models <<- new.env() # list()
nimbleFunctions <<- new.env() # list
nimbleLists <<- new.env()
nfCompInfos <<- list() # list()
nlCompInfos <<- list()
cppProjects <<- list() #new.env() #list()
refClassDefsEnv <<- new.env()
dirName <<- if(is.null(dir)) makeDefaultDirName() else dir
if(name == '') projectName <<- projectNameCreator() else projectName <<- name
},
clearCompiled = function(functions = TRUE, models = TRUE, DLLs = TRUE) {
if(functions) resetFunctions(finalize = TRUE)
if(models) resetModels(finalize = TRUE)
if(DLLs) unloadDLLs()
},
unloadDLLs = function() {
for(i in seq_along(cppProjects)) {
cppProjects[[i]]$unloadSO(check = TRUE, force = FALSE)
}
},
resetModels = function(finalize = TRUE) {
for(i in ls(models)) {
models[[i]]$CobjectInterface$finalizeInternal()
models[[i]]$CobjectInterface <<- NULL
models[[i]]$nimbleProject <<- NULL
models[[i]]$Cname <<- character(0)
models[[i]] <<- NULL
}
for(i in ls(RCfunInfos)) {
if(length(RCfunInfos[[i]]$fromModel) > 0) {
if(RCfunInfos[[i]]$fromModel) {
if(!is.null(RCfunCppInterfaces[[i]])) { ## could be null if it was a neededType and an interface was never built
environment(RCfunCppInterfaces[[i]])$CnativeSymbolInfo_ <<- NULL
##RCfunCppInterfaces[[i]] <<- NULL
rm(list = i, envir = RCfunCppInterfaces)
}
assign('nimbleProject', NULL, envir = RCfunInfos[[i]]$nfMethodRCobj)
thisName <- RCfunInfos[[i]]$nfMethodRCobj$uniqueName
##if(!is.null(cppProjects[[thisName]])) cppProjects[[thisName]] <<- NULL
##RCfunInfos[[i]] <<- NULL
rm(list = i, envir = RCfunInfos)
}
}
}
for(i in ls(nfCompInfos)) {
if(length(nfCompInfos[[i]]$fromModel) > 0) {
if(nfCompInfos[[i]]$fromModel) {
for(j in seq_along(nfCompInfos[[i]]$Rinstances)) {
thisEnv <- environment(nfCompInfos[[i]]$Rinstances[[j]])
thisRCO <- nf_getRefClassObject(nfCompInfos[[i]]$Rinstances[[j]])
if(exists('name', envir = thisRCO, inherits = FALSE)) {
thisname <- thisRCO$name
rm(list = thisname, envir = nimbleFunctions)
rm('name', envir = thisRCO)
}
thisRCO[['nimbleProject']] <- NULL
## finalization done internally to the model interface
}
nfCompInfos[[i]] <<- NULL
## cppProjects[[i]] <<- NULL
}
}
}
},
resetFunctions = function(finalize = FALSE) {
## clear everything except models and nimbleFunctions from models
for(i in ls(mvInfos)) {
clearThisMV <- TRUE ## It looked like in some situations we'd not want to clear here, but apparently we always should
## OK, what happens is we used to check if a cppClass was from a model and then not clear, but that isn't right.
## It could be defined from a model but then have objects from nimbleFunctions that need to be cleared.
if(clearThisMV) {
mvInfos[[i]]$cppClass <<- NULL
for(j in seq_along(mvInfos[[i]]$RmvObjs)) {
if(!is.null(mvInfos[[i]]$RmvObjs[[j]]$CobjectInterface)) {
if(finalize) {
mvInfos[[i]]$RmvObjs[[j]]$CobjectInterface$finalizeInternal()
}
mvInfos[[i]]$RmvObjs[[j]]$CobjectInterface <<- NULL
}
}
rm(list = i, envir = mvInfos)
}
}
for(i in ls(RCfunInfos)) {
if(length(RCfunInfos[[i]]$fromModel) > 0) {
if(!RCfunInfos[[i]]$fromModel) {
if(!is.null(RCfunCppInterfaces[[i]])) { ## could be null if it was a neededType and an interface was never built
environment(RCfunCppInterfaces[[i]])$CnativeSymbolInfo_ <<- NULL
##RCfunCppInterfaces[[i]] <<- NULL
rm(list = i, envir = RCfunCppInterfaces)
}
assign('nimbleProject', NULL, envir = RCfunInfos[[i]]$nfMethodRCobj)
thisName <- RCfunInfos[[i]]$nfMethodRCobj$uniqueName
rm(list = i, envir = RCfunInfos)
}
}
}
for(i in ls(nfCompInfos)) {
if(length(nfCompInfos[[i]]$fromModel) > 0) {
if(!nfCompInfos[[i]]$fromModel) {
for(j in seq_along(nfCompInfos[[i]]$Rinstances)) {
thisEnv <- environment(nfCompInfos[[i]]$Rinstances[[j]])
thisRCO <- nf_getRefClassObject(nfCompInfos[[i]]$Rinstances[[j]])
if(exists('name', envir = thisRCO, inherits = FALSE)) {
thisname <- thisRCO$name
rm(list = thisname, envir = nimbleFunctions)
rm('name', envir = thisRCO)
}
thisRCO[['nimbleProject']] <- NULL
if(finalize) {
if(!is.null(thisRCO$.CobjectInterface)) {
if(is.list( thisRCO$.CobjectInterface)) { ## CmultiNimbleFunctionInterface
thisRCO$.CobjectInterface[[1]]$finalizeInstance(thisRCO$.CobjectInterface[[2]])
} else {
thisRCO$.CobjectInterface$finalizeInternal()
}
thisRCO$.CobjectInterface <- NULL
}
}
}
nfCompInfos[[i]] <<- NULL
}
}
}
},
addModelValuesClass = function(mvConf, fromModel = FALSE) {
mvClassName <- environment(mvConf)$className
if(!is.null(mvInfos[[mvClassName]])) stop('Trying to add a modelValues class with the same name as one already in this project', call. = FALSE)
mvInfos[[mvClassName]] <<- mvInfoClass(cppClassName = mvClassName, cppClass = NULL, mvConf = mvConf, fromModel = fromModel)
},
getModelValuesCppDef = function(mvConf, NULLok = FALSE) {
mvClassName <- environment(mvConf)$className
if(is.null(mvInfos[[mvClassName]])) {
if(!NULLok) stop('Project does not know about this modelValues class but the cppDef is being requested', call. = FALSE)
else return(NULL)
}
ans <- mvInfos[[mvClassName]]$cppClass
if(is.null(ans)) {
if(!NULLok) stop('cppDef for a requested modelValues class has not been generated but was requested.', call. = FALSE)
else return(NULL)
}
ans
},
addModel = function(model) {
if(!inherits(model, 'RmodelBaseClass')) stop('model provided to project is not an RmodelBaseClass', call. = FALSE)
modelDefName <- model$modelDef$name
if(is.null(modelDefInfos[[modelDefName]])) {
modelDefInfos[[modelDefName]] <<- modelDefInfoClass(
labelMaker = labelFunctionCreator(paste0(modelDefName, '_'))
)
if(identical(model$name, character(0))) {
model$name <- modelDefInfos[[modelDefName]]$labelMaker()
} else {
if(!is.null(models[[ model$name ]])) stop('Model provided to project has same name as another one in the same project')
}
if(identical(model$Cname, character(0))) {
model$Cname <- Rname2CppName(model$name)
}
model$nimbleProject <- .self
models[[ model$name ]] <<- model
}
},
addNimbleFunctionMulti = function(funList, fromModel = FALSE, generatorFunNames = NULL) {
if(length(funList) == 0) return(invisible(NULL))
if(!is.nf(funList[[1]])) stop('first nimbleFunction provided to project is not a nimbleFunction.', call. = FALSE)
inProjectAlready <- unlist(lapply(funList, function(x) identical(x[['nimbleProject']], .self)))
if(any(inProjectAlready)) {
stop('Trying to add list of nimbleFunctions but some are already part of another project. If you are recompiling, try redefining models and specialized nimbleFunctions. (The reset option works now for nimbleFunctions but not models.)', call. = FALSE)
}
allGeneratorNames <- if(is.null(generatorFunNames))
unlist(lapply(funList, function(x) environment(x$.generatorFunction)$name), use.names = FALSE)
else
generatorFunNames
generatorName2Indices <- split(seq_along(funList), allGeneratorNames)
for(i in seq_along(generatorName2Indices)) { ##genID in uniqueGeneratorNameIndices) {
genID <- generatorName2Indices[[i]][1]
generatorName <- names(generatorName2Indices)[i] ##allGeneratorNames[genID]
if(is.null(nfCompInfos[[generatorName]])) {
## nfProc could have been created already during makeTypeObject for another nimbleFunction so it knows the types of this one.
nfCompInfos[[generatorName]] <<- nfCompilationInfoClass(nfGenerator = nf_getGeneratorFunction(funList[[genID]]),
Rcompiled = FALSE, written = FALSE, cppCompiled = FALSE, loaded = FALSE,
RinitTypesProcessed = FALSE, virtual = FALSE,
fromModel = fromModel)
nfCompInfos[[generatorName]]$labelMaker <<- labelFunctionCreator(paste0(generatorName,'_'))
}
genIDs <- generatorName2Indices[[i]]
newLabels <- nfCompInfos[[generatorName]]$labelMaker(count = length(genIDs))
namedFunList <- funList[genIDs]
names(namedFunList) <- newLabels
list2env(namedFunList, envir = nimbleFunctions)
nfCompInfos[[generatorName]]$addRinstanceList(namedFunList)
newEnvs <- lapply(seq_along(newLabels), new.env)
names(newEnvs) <- newLabels
CppNewLabels <- Rname2CppName(newLabels)
for(j in seq_along(newLabels)) {
funList[[genIDs[j]]][['Cname']] <- CppNewLabels[j]
funList[[genIDs[j]]][['name']] <- newLabels[j] ## skip the checking done in addNimbleFunction
funList[[genIDs[j]]][['nimbleProject']] <- .self
}
}
},
addNimbleFunction = function(fun, fromModel = FALSE) {
if(!is.nf(fun)) stop('nimbleFunction provided to project is not a nimbleFunction.', call. = FALSE)
inProjectAlready <- nf_getRefClassObject(fun)[['nimbleProject']]
if(!is.null(inProjectAlready)) {
if(!identical(inProjectAlready, .self)) stop('Trying to add a specialized nimbleFunction to a project, but it is already part of another project. \nIf you did not specify a project, this error can occur in trying to create a new project -- you likely need to specify the relevant model as the project.\nIf you are recompiling, try redefining models and specialized nimbleFunctions. (The reset option works now for nimbleFunctions but not models.)', call. = FALSE)
else warning('Adding a specialized nimbleFunction to a project to which it already belongs.', call. = FALSE)
}
generatorName <- nfGetDefVar(fun, 'name')
if(is.null(nfCompInfos[[generatorName]])) {
## nfProc could have been created already during makeTypeObject for another nimbleFunction so it knows the types of this one.
nfCompInfos[[generatorName]] <<- nfCompilationInfoClass(nfGenerator = nf_getGeneratorFunction(fun),
Rcompiled = FALSE, written = FALSE, cppCompiled = FALSE, loaded = FALSE,
RinitTypesProcessed = FALSE, virtual = FALSE,
fromModel = fromModel)
nfCompInfos[[generatorName]]$labelMaker <<- labelFunctionCreator(paste0(generatorName,'_'))
}
if(!exists('name', envir = nf_getRefClassObject(fun), inherits = FALSE)) {
assign('name', nfCompInfos[[generatorName]]$labelMaker(), envir = nf_getRefClassObject(fun))
} else {
if(!is.null(nimbleFunctions[[ nf_getRefClassObject(fun)$name ]])) {
stop('nimbleFunction provided to project has same name as another one in the same project.', call. = FALSE)
}
}
nimbleFunctions[[ nf_getRefClassObject(fun)$name ]] <<- fun
nfCompInfos[[generatorName]]$addRinstance(fun)
if(!exists('Cname', envir = nf_getRefClassObject(fun), inherits = FALSE)) {
assign('Cname', Rname2CppName(nf_getRefClassObject(fun)$name), envir = nf_getRefClassObject(fun))
}
assign('nimbleProject', .self, envir = nf_getRefClassObject(fun))
## could check for duplicate Cnames here, but if the names are unique the Cnames should be too.
},
addNimbleListGen = function(nlGen) {
if(!is.nlGenerator(nlGen)) stop('invalid nimbleListGen provided to addNimbleListGen.', call. = FALSE)
## get className
className <- nl.getListDef(nlGen)$className
## check if there is a nlCompInfos,
## add if needed
if(is.null(nlCompInfos[[className]])) {
## nfProc could have been created already during makeTypeObject for another nimbleFunction so it knows the types of this one.
nlCompInfos[[className]] <<- nlCompilationInfoClass(written = FALSE, cppCompiled = FALSE, Rcompiled = FALSE,
RinitTypesProcessed = FALSE, loaded = FALSE)
nlCompInfos[[className]]$labelMaker <<- labelFunctionCreator(paste0(className,'_'))
}
nestedListGens <- nl.getNestedGens(nlGen)
for(i in seq_along(nestedListGens))
addNimbleListGen(nestedListGens[[i]])
},
addNimbleList = function(nl, fromModel = FALSE, nestedList = FALSE) { ##fromModel never used: clean up.
if(!is.nl(nl)) stop('nimbleList provided to project is not a nimbleList.', call. = FALSE)
inProjectAlready <- nl[['nimbleProject']]
if(!is.null(inProjectAlready)) {
if(!identical(inProjectAlready, .self)) stop('Trying to add a specialized nimbleList to a project, but it is already part of another project. \nIf you did not specify a project, this error can occur in trying to create a new project -- you likely need to specify the relevant model as the project.\nIf you are recompiling, try redefining models and specialized nimbleFunctions and nimbleLists.', call. = FALSE)
else warning('Adding a specialized nimbleList to a project to which it already belongs.', call. = FALSE)
}
## Next two lines can become addNimbleListGen, but would have to migrate recursion out of compileNimbleList
className <- nl$nimbleListDef$className
if(is.null(nlCompInfos[[className]])) {
## nfProc could have been created already during makeTypeObject for another nimbleFunction so it knows the types of this one.
nlCompInfos[[className]] <<- nlCompilationInfoClass(written = FALSE, cppCompiled = FALSE, Rcompiled = FALSE,
RinitTypesProcessed = FALSE, loaded = FALSE)
nlCompInfos[[className]]$labelMaker <<- labelFunctionCreator(paste0(className,'_'))
}
if(!exists('name', envir = nl, inherits = FALSE)) {
assign('name', nlCompInfos[[className]]$labelMaker(), envir = nl)
} else {
if(!is.null(nimbleLists[[ nl$name ]])) {
stop('nimbleList provided to project has same name as another one in the same project', call. = FALSE)
}
}
if(!nestedList) nimbleLists[[ nl$name ]] <<- nl
if(!exists('Cname', envir = nl, inherits = FALSE)) {
assign('Cname', Rname2CppName(nl$name), envir = nl)
}
assign('nimbleProject', .self, envir = nl)
## could check for duplicate Cnames here, but if the names are unique the Cnames should be too.
},
addRCfun = function(nfmObj, fromModel = FALSE) {
if(!inherits(nfmObj, 'nfMethodRC')) stop("Can't add this function. nfmObj is not an nfMethodRC", call. = FALSE)
className <- nfmObj$uniqueName
if(is.null(RCfunInfos[[className]])) {
RCfunInfos[[className]] <<- RCfunInfoClass(nfMethodRCobj = nfmObj, RCfunProc = NULL, cppClass = NULL, fromModel = fromModel, RinitTypesProcessed = FALSE, Rcompiled = FALSE)
}
assign('nimbleProject', .self, envir = nfmObj) ## needed for clearCompiled(), i.e. safe dyn.unload()
},
getRCfunCppDef = function(nfmObj, NULLok = FALSE) {
className <- nfmObj$uniqueName
ans <- RCfunInfos[[className]]
if(is.null(ans)) {
if(!NULLok) stop("Requested to get an RCfunCppDef but it is not in the project and NULLok = FALSE", call. = FALSE)
return(NULL)
}
ans <- ans$cppClass
if(inherits(ans, 'uninitializedField') ) return(NULL)
ans
},
needRCfunCppClass = function(nfmObj, genNeededTypes = TRUE, initialTypeInference = FALSE, control = list(debug = FALSE, debugCpp = FALSE), fromModel = FALSE) {
if(!inherits(nfmObj, 'nfMethodRC')) stop("Can't compile this function. nfmObj is not an nfMethodRC", call. = FALSE)
className <- nfmObj$uniqueName
Cname <- Rname2CppName(className)
RCfunInfo <- RCfunInfos[[className]]
if(is.null(RCfunInfo)) addRCfun(nfmObj, fromModel = fromModel)
if(is.null(RCfunInfos[[className]]$RCfunProc)) {
RCfunInfos[[className]]$RCfunProc <<- RCfunProcessing$new(nfmObj, Cname)
}
if(!RCfunInfos[[className]]$RinitTypesProcessed) {
RCfunInfos[[className]]$RCfunProc$process(debug = control$debug, debugCpp = control$debugCpp, initialTypeInferenceOnly = TRUE, nimbleProject = .self)
RCfunInfos[[className]]$RinitTypesProcessed <<- TRUE
}
if(initialTypeInference) return(RCfunInfos[[className]]$RCfunProc)
if(!RCfunInfos[[className]]$Rcompiled) {
RCfunInfos[[className]]$RCfunProc$process(debug = control$debug, debugCpp = control$debugCpp, initialTypeInferenceOnly = FALSE, nimbleProject = .self)
RCfunInfos[[className]]$Rcompiled <<- TRUE
}
cppClass <- RCfunInfos[[className]]$cppClass
if(is.null(cppClass)) {
cppClass <- RCfunctionDef(project = .self)
cppClass$buildFunction(RCfunInfos[[className]]$RCfunProc)
cppClass$buildSEXPinterfaceFun()
if(genNeededTypes) cppClass$genNeededTypes()
RCfunInfos[[className]]$cppClass <<- cppClass
}
cppClass
},
compileRCfun = function( fun, filename = NULL, initialTypeInference = FALSE, control = list(debug = FALSE, debugCpp = FALSE, writeFiles = TRUE, returnAsList = FALSE), showCompilerOutput = getNimbleOption('showCompilerOutput')) {
disableWrite <- FALSE
if(getNimbleOption('enableSpecialHandling')) {
SH <- filenameFromSpecialHandling(fun)
if(!is.null(filename)) {
filename <- SH
disableWrite <- TRUE
}
}
if(is.rcf(fun)) fun <- environment(fun)$nfMethodRCobject
addRCfun(fun) ## checks if it already exists and if it is an nfMethodRC ## redundant? done also in next step.
cppClass <- needRCfunCppClass(fun, genNeededTypes = TRUE, initialTypeInference = initialTypeInference, control = control)
if(initialTypeInference) return(cppClass) ## in this case cppClass with be an RCfunProc
className <- fun$uniqueName
if(control$writeFiles) {
cppProj <- cppProjectClass(dirName = dirName)
cppProjects[[ className ]] <<- cppProj
if(is.null(filename)) filename <- paste0(projectName, '_', className)
cppProj$addClass( cppClass, className, filename )
if(!disableWrite) cppProj$writeFiles(filename)
}
if(control$compileCpp) {
cppProj$compileFile(filename, showCompilerOutput)
}
if(control$loadSO) {
cppProj$loadSO(filename)
}
RCfunCppInterfaces[[className]] <<- cppClass$buildRwrapperFunCode(includeLHS = FALSE, eval = TRUE, returnArgsAsList = control$returnAsList, dll = cppProj$dll)
RCfunCppInterfaces[[className]]
},
needModelValuesCppClass = function(mvConf, fromModel = FALSE, forAD = FALSE) {
if(!isModelValuesConf(mvConf)) stop("Can't compileModelValues: mvConf is not a modelValuesConf", call. = FALSE)
mvClassName <- environment(mvConf)$className
mvInfo <- mvInfos[[mvClassName]]
if(is.null(mvInfo)) addModelValuesClass(mvConf, fromModel)
cppClass <- mvInfos[[mvClassName]]$cppClass
if(is.null(cppClass)) {
cppClass <- cppModelValuesClass(name = mvClassName,
vars = environment(mvConf)$symTab,
project = .self)
cppClass$buildAll(forAD = forAD)
mvInfos[[mvClassName]]$cppClass <<- cppClass
}
cppClass
},
instantiateCmodelValues = function(mv, dll) {
mvClassName <- class(mv)
cppDef <- mvInfos[[mvClassName]]$cppClass
if(is.null(cppDef)) stop('Trying to instantiate a modelValues type that the project has no record of. Try setting option resetFunctions = TRUE in compileNimble')
generatorName <- cppDef$SEXPgeneratorFun$name
sym = if(!is.null(dll))
getNativeSymbolInfo(generatorName, dll)
else {
warning('A nimbleFunctionInterface is about to build a CmodelValues without dll info, based on generatorFun name only.', call. = FALSE)
generatorName
}
ans <- CmodelValues(sym, dll = dll)
mvInfos[[mvClassName]]$addRmv(mv) ## simply a list for later clearing
mv$CobjectInterface <- ans
ans
},
compileModel = function(model,
filename = NULL,
control = list(debug = FALSE, debugCpp = FALSE, writeFiles = TRUE, compileCpp = TRUE, loadSO = TRUE),
showCompilerOutput = getNimbleOption('showCompilerOutput'),
where = globalenv()) {
compileModel_impl(.self,
model = model,
filename = filename,
control = control,
showCompilerOutput = showCompilerOutput,
where = where)
},
## nimbleList functions
addNestedNls = function(nl){
for(iNl in names(nl$nestedListGenList)){
addNimbleList(nl[[iNl]], nestedList = TRUE)
if(length(nl[[iNl]]$nestedListGenList) > 0){
addNestedNls(nl[[iNl]])
}
}
},
compileNimbleList = function(nl, filename = NULL, initialTypeInferenceOnly = FALSE,
control = list(debug = FALSE, debugCpp = FALSE, compileR = TRUE, writeFiles = TRUE, compileCpp = TRUE, loadSO = TRUE),
reset = FALSE, returnCppClass = FALSE, className = NULL, alreadyAdded = FALSE) { ## className? alreadyAdded?
## add possibility that nl is a generator
generatorOnly <- FALSE
if(is.nlGenerator(nl)) {
## determine className
className <- nl.getListDef(nl)$className
generatorOnly <- TRUE
nlGen <- nl
nlList <- nl
} else {
if(is.list(nl)) {
if(is.null(className)) className <- unique(unlist(lapply(nl, function(x) x$nimbleListDef$className)))
if(length(className) != 1) stop(paste0('Not all elements in the nimbleList list for compileNimbleList are from the same nimbleFunctionDef. The class names include:', paste(className, collapse = ' ')), call. = FALSE)
nlList <- nl
## set generator
} else {
if(!is.nl(nl)) stop("nl argument provided is not a nimbleList.", call. = FALSE)
nlList <- list(nl)
className <- nl$nimbleListDef$className
## set generator
}
nlGen <- nl.getGenerator(nlList[[1]])
}
if(reset) nlCompInfos[[className]] <<- NULL
if(!alreadyAdded) {
if(generatorOnly) {
## check if generator exists and do addNimbleListGen
## and recurse into nestedListGenList
addNimbleListGen(nlGen)
} else {
for(i in seq_along(nlList)) {
addNL <- TRUE
thisName <- nlList[[i]][['name']]
if(!is.null(thisName)) {
tmp <- nimbleLists[[thisName]]
if(!is.null(tmp)) {
if(reset) {
nimbleLists[[thisName]] <<- NULL
} else {
if(!identical(nlList[[i]], tmp)) stop('Trying to compile something with same name as previously added nimbleList that is not the same thing.')
addNL <- FALSE
}
}
}
if(addNL){
addNimbleList(nlList[[i]])
## if any nested lists, add them too (recursively)
if(length(nlList[[i]]$nestedListGenList) > 0){
addNestedNls(nlList[[i]])
}
}
}
}
}
## modify to pull nestedListGenList from generator
nestedListGens <- nl.getNestedGens(nlGen)
for(iNestedNL in seq_along(nestedListGens)) {
compileNimbleList(nestedListGens[[iNestedNL]], initialTypeInferenceOnly = TRUE, alreadyAdded = TRUE)
}
cppClass <- buildNimbleListCompilationInfo(nlList, initialTypeInferenceOnly = initialTypeInferenceOnly)
if(initialTypeInferenceOnly || returnCppClass) return(cppClass)
message('Remaining compileNimbleList is not yet adapted')
if(!nlCompInfos[[className]]$written && control$writeFiles) {
cppProj <- cppProjectClass(dirName = dirName)
cppProjects[[ className ]] <<- cppProj
if(is.null(filename)) filename <- paste0(projectName, '_', Rname2CppName(className))
cppProj$addClass(cppClass, className, filename)
cppProj$writeFiles(filename)
nlCompInfos[[className]]$written <<- TRUE
} else {
if(!control$writeFiles) return(cppProj)
cppProj <- cppProjects[[ className ]]
}
if(!nlCompInfos[[className]]$cppCompiled && control$compileCpp) {
if(control$compileCpp) {
cppProj$compileFile(filename)
nlCompInfos[[className]]$cppCompiled <<- TRUE
} else writeLines('Skipping compilation because control$compileCpp is FALSE')
} else {if(!control$compileCpp) return(cppProj)}#writeLines('Using previously compiled C++ code.')
if(!nlCompInfos[[className]]$loaded && control$loadSO) {
cppProj$loadSO(filename)
nlCompInfos[[className]]$loaded <<- TRUE
} else{if(!control$loadSO) return(cppProj)}# writeLines('Using previously loaded compilation unit.')
ans <- vector('list', length(nlList))
for(i in seq_along(nlList)) {
ans[[i]] <- nlCompInfos[[className]]$cppDef$buildCallable(nlList[[i]], cppProj$dll, asTopLevel = TRUE)
}
if(length(ans) == 1) ans[[1]] else ans
},
## nimbleFunction functions
getNimbleFunctionCppDef = function(generatorName, nfProc) {
if(missing(generatorName)) {
if(missing(nfProc)) stop('No good information provided to getNimbleFunctionCppDef', call. = FALSE)
generatorName <- environment(nfProc$nfGenerator)[['name']]
if(is.null(generatorName)) stop('Invalid generatorName', call. = FALSE)
}
if(is.null(nfCompInfos[[generatorName]])){
return(NULL)
}
ans <- nfCompInfos[[generatorName]]$cppDef
if(inherits(ans, 'uninitializedField') ) return(NULL)
ans
},
getNimbleFunctionNFproc = function(fun) {
generatorName <- nfGetDefVar(fun, 'name')
if(is.null(nfCompInfos[[generatorName]])) return(NULL)
ans <- nfCompInfos[[generatorName]]$nfProc
if(inherits(ans, 'uninitializedField')) return(NULL)
ans
},
getNimbleListCppDef = function(generatorName, nlProc) {
if(missing(generatorName)) {
if(missing(nlProc)) stop('No good information provided to getNimbleListCppDef', call. = FALSE)
generatorName <- nlProc$nimbleListObj$className
if(is.null(generatorName)) stop('Invalid generatorName', call. = FALSE)
}
if(is.null(nlCompInfos[[generatorName]])){
return(NULL)
}
ans <- nlCompInfos[[generatorName]]$cppDef
if(inherits(ans, 'uninitializedField') ) return(NULL)
ans
},
getNimbleListNLproc = function(fun) {
generatorName <- fun$name
if(is.null(nlCompInfos[[generatorName]])) return(NULL)
ans <- nlCompInfos[[generatorName]]$nlProc
if(inherits(ans, 'uninitializedField')) return(NULL)
ans
},
buildVirtualNimbleFunctionCompilationInfo = function(vfun, initialTypeInferenceOnly = FALSE, control = list(debug = FALSE, debugCpp = FALSE)) {
if(!is.character(vfun)) {
if(!is.nfGenerator(vfun)) stop("Something provided as a nimbleFunctionVirtual does not appear to be correct.", call. = FALSE)
if(!(environment(vfun)$virtual)) stop("Something provided as a nimbleFunctionVirtual is an nfGenerator but not a virtual one.", call. = FALSE)
if(initialTypeInferenceOnly) stop("Can't do initialTypeInferenceOnly on a virtualNimbleFunction", call. = FALSE)
generatorName <- environment(vfun)$name
} else {
generatorName <- vfun
}
if(is.null(nfCompInfos[[generatorName]])) stop("It doesn't look like nfCompInfos was set up for this generator. Call setupVirtualNimbleFunction first.", call. = FALSE)
if(inherits(nfCompInfos[[generatorName]]$nfProc, 'uninitializedField')) {## might always be FALSE by this point in processing
if(is.character(vfun)) stop("vfun given as character but nfProc doesn't exist yet", call. = FALSE)
nfCompInfos[[generatorName]]$nfProc <<- virtualNFprocessing$new(vfun, generatorName, project = .self)
}
if(!nfCompInfos[[generatorName]]$Rcompiled) {
nfCompInfos[[generatorName]]$nfProc$process(control = control)
nfCompInfos[[generatorName]]$Rcompiled <<- TRUE
}
if(inherits(nfCompInfos[[generatorName]]$cppDef, 'uninitializedField')) {
newCppClass <- cppVirtualNimbleFunctionClass(name = generatorName,
nfProc = nfCompInfos[[generatorName]]$nfProc,
project = .self)
nfCompInfos[[generatorName]]$cppDef <<- newCppClass
newCppClass ## possible return value
} else {
nfCompInfos[[generatorName]]$cppDef ## return value if already exists
}
},
buildNimbleFunctionCompilationInfo = function(funList = NULL, generatorName, initialTypeInferenceOnly = FALSE,
isNode = FALSE, control = list(debug = FALSE, debugCpp = FALSE), where = globalenv(), fromModel = FALSE) {
## like old makeCppNIMBLEfunction
## check of make new nfCompInfos item
## ensure it is build up to the cppNimbleFunctionClass
if(!is.null(funList)) {
generatorName <- nfGetDefVar(funList[[1]], 'name')
name <- nf_getRefClassObject(funList[[1]])$name
Cname <- nf_getRefClassObject(funList[[1]])$Cname
if(is.null(nfCompInfos[[generatorName]])) stop("Requested buildNimbleFunctionCompilationInfo for a generator for which no specialized NF has been added to the project", call. = FALSE)
if(inherits(nfCompInfos[[generatorName]]$nfProc, 'uninitializedField'))
nfCompInfos[[generatorName]]$nfProc <<- nfProcessing(funList, generatorName, fromModel = fromModel, project = .self, isNode = isNode)
} else {
if(missing(generatorName)) stop("If funList is omitted, a generator name must be provided to buildNimbleFunctionCompilationInfo", call. = FALSE)
if(inherits(nfCompInfos[[generatorName]]$nfProc, 'uninitializedField')) stop("buildNimbleFunctionCompilationInfo was called with only a generatorName (probably from genNeededTypes), but the nfProc is missing.", call. = FALSE)
}
if(initialTypeInferenceOnly) {
if(!nfCompInfos[[generatorName]]$RinitTypesProcessed) {
nfCompInfos[[generatorName]]$nfProc$setupTypesForUsingFunction()
nfCompInfos[[generatorName]]$RinitTypesProcessed <<- TRUE
}
return(nfCompInfos[[generatorName]]$nfProc)
}
if(!nfCompInfos[[generatorName]]$Rcompiled) {
nfCompInfos[[generatorName]]$nfProc$process(control = control)
nfCompInfos[[generatorName]]$Rcompiled <<- TRUE
}
if(inherits(nfCompInfos[[generatorName]]$cppDef, 'uninitializedField')) {
newCppClass <- cppNimbleFunctionClass(name = generatorName,
nfProc = nfCompInfos[[generatorName]]$nfProc,
isNode = isNode,
debugCpp = control$debugCpp,
project = .self,
fromModel = fromModel
)
newCppClass$buildAll(where = where)
nfCompInfos[[generatorName]]$cppDef <<- newCppClass
newCppClass ## possible return value
} else {
nfCompInfos[[generatorName]]$cppDef ## return value if already exists
}
},
buildNimbleListCompilationInfo = function(listList = NULL, className, initialTypeInferenceOnly = FALSE,
control = list(debug = FALSE, debugCpp = FALSE), where = globalenv(), fromModel = FALSE
) {
if(!is.null(listList)) {
## check for nimbleListGen and get className
if(is.nlGenerator(listList)) {
className <- nl.getListDef(listList)$className
} else {
className <- listList[[1]]$nimbleListDef$className
name <- listList[[1]]$name
Cname <- listList[[1]]$Cname
}
if(is.null(nlCompInfos[[className]])) stop("Requested buildNimbleListCompilationInfo for a generator that has not been added to the project", call. = FALSE)
if(inherits(nlCompInfos[[className]]$nlProc, 'uninitializedField'))
nlCompInfos[[className]]$nlProc <<- nlProcessing(listList, className, project = .self)
} else {
if(missing(className)) stop("If listList is omitted, a class name must be provided to buildNimbleListCompilationInfo", call. = FALSE)
if(inherits(nlCompInfos[[className]]$nlProc, 'uninitializedField')) stop("buildNimbleListCompilationInfo was called with only a className (probably from genNeededTypes), but the nfProc is missing.", call. = FALSE)
}
if(initialTypeInferenceOnly) {
if(!nlCompInfos[[className]]$RinitTypesProcessed) {
nlCompInfos[[className]]$nlProc$setupTypesForUsingFunction()
nlCompInfos[[className]]$RinitTypesProcessed <<- TRUE
}
return(nlCompInfos[[className]]$nlProc)
}
if(!nlCompInfos[[className]]$Rcompiled) {
nlCompInfos[[className]]$nlProc$process(control = control)
nlCompInfos[[className]]$Rcompiled <<- TRUE
}
if(inherits(nlCompInfos[[className]]$cppDef, 'uninitializedField')) {
newCppClass <- cppNimbleListClass(name = className,
nimCompProc = nlCompInfos[[className]]$nlProc,
debugCpp = control$debugCpp,
project = .self
)
newCppClass$buildAll(where = where)
nlCompInfos[[className]]$cppDef <<- newCppClass
newCppClass ## possible return value
} else {
nfCompInfos[[className]]$cppDef ## return value if already exists
}
},
instantiateNimbleList = function(nl, dll, asTopLevel = TRUE) { ## called by cppInterfaces_models and cppInterfaces_nimbleFunctions
## to instantiate neededObjects
for(nestedNL in names(nl$nestedListGenList)) {
nestedAns <- instantiateNimbleList(nl[[nestedNL]], dll, asTopLevel)
}
if(!is.nl(nl)) stop("Can't instantiateNimbleList, nl is not a nimbleList")
className <- nl$nimbleListDef$className
nlCppDef <- getNimbleListCppDef(generatorName = className)
ok <- TRUE
dllToUse <- if(isTRUE(nl.getDefinitionContent(nl.getGenerator(nl), 'predefined')))
nimbleUserNamespace$sessionSpecificDll
else dll
if(asTopLevel) {
if(is.null(nlCppDef$Rgenerator)) ok <- FALSE
else ans <- nlCppDef$Rgenerator(nl, dll = dllToUse, project = .self)
} else {
if(is.null(nlCppDef$CmultiInterface)) ok <- FALSE
else ans <- nlCppDef$CmultiInterface$addInstance(nl, dll = dllToUse)
}
if(!ok) stop("There is something in this compilation job that doesn\'t fit together. This can happen in some cases if you are trying to compile new pieces into an existing project.If that is the situation, please try including \"resetFunctions = TRUE\" as an argument to compileNimble. Alternatively please try rebuilding the project from the beginning with more pieces in the same call to compileNimble. For example, if you are compiling multiple algorithms for the same model in multiple calls to compileNimble, try compiling them all with one call.", call. = FALSE)
ans
},
instantiateNimbleFunction = function(nf, dll, asTopLevel = TRUE) { ## called by cppInterfaces_models and cppInterfaces_nimbleFunctions
## to instantiate neededObjects
if(!is.nf(nf)) stop("Can't instantiateNimbleFunction, nf is not a nimbleFunction")
generatorName <- nfGetDefVar(nf, 'name')
nfCppDef <- getNimbleFunctionCppDef(generatorName = generatorName)
ok <- !is.null(nfCppDef)
if(ok) {
ans <- nfCppDef$buildCallable(nf, dll = dll, asTopLevel = asTopLevel)
ok <- !is.null(ans)
}
if(!ok) stop("Oops, there is something in this compilation job that doesn\'t fit together. This can happen in some cases if you are trying to compile new pieces into an exising project. If that is the situation, please try including \"resetFunctions = TRUE\" as an argument to compileNimble. Alternatively please try rebuilding the project from the beginning with more pieces in the same call to compileNimble. For example, if you are compiling multiple algorithms for the same model in multiple calls to compileNimble, try compiling them all with one call.", call. = FALSE)
ans
},
setupVirtualNimbleFunction = function(vfun, fromModel = FALSE) {
if(!is.nfGenerator(vfun)) stop('nimbleFunctionVirtual provided to project is not a nimbleFunction generator.', call. = FALSE)
if(!(environment(vfun)$virtual)) stop("Something provided as a nimbleFunctionVirtual is an nfGenerator but not a virtual one.", call. = FALSE)
generatorName <- environment(vfun)$name
if(is.null(nfCompInfos[[generatorName]])) {
nfCompInfos[[generatorName]] <<- nfCompilationInfoClass(nfGenerator = vfun,
Rcompiled = FALSE, written = FALSE, cppCompiled = FALSE, loaded = FALSE,
RinitTypesProcessed = FALSE, virtual = TRUE, fromModel = fromModel)
nfCompInfos[[generatorName]]$labelMaker <<- NULL ## not needed?
}
if(inherits(nfCompInfos[[generatorName]]$nfProc, 'uninitializedField'))
nfCompInfos[[generatorName]]$nfProc <<- virtualNFprocessing$new(vfun, generatorName, project = .self)
if(!nfCompInfos[[generatorName]]$Rcompiled) { ## to support nimbleLists, this step goes here now, so by size processing the method symbol tables will be set up
nfCompInfos[[generatorName]]$nfProc$process(control = control) ## there is no need for an initialTypeInference flag because that is *all* that a virtual NF really does anyway
nfCompInfos[[generatorName]]$Rcompiled <<- TRUE
}
nfCompInfos[[generatorName]]$nfProc
},
compileNimbleFunctionMulti = function(funList, isNode = FALSE, filename = NULL, initialTypeInferenceOnly = FALSE,
control = list(debug = FALSE, debugCpp = FALSE, compileR = TRUE, writeFiles = TRUE, compileCpp = TRUE, loadSO = TRUE),
reset = FALSE, returnCppClass = FALSE, where = globalenv(), fromModel = FALSE, generatorFunNames = NULL, alreadyAdded = FALSE, showCompilerOutput = getNimbleOption('showCompilerOutput')) {
if(!is.list(funList)) stop('funList in compileNimbleFunctionMulti should be a list', call. = FALSE)
allGeneratorNames <- if(is.null(generatorFunNames)) lapply(funList, nfGetDefVar, 'name') else generatorFunNames
uniqueGeneratorNames <- unique(allGeneratorNames)
if(initialTypeInferenceOnly || returnCppClass) {
ans <- list()
if(initialTypeInferenceOnly) oldKnownGeneratorNames <- ls(nfCompInfos)
} else ans <- vector('list', length(funList))
for(uGN in uniqueGeneratorNames) {
thisBool <- allGeneratorNames == uGN
thisAns <- compileNimbleFunction( funList[ thisBool ], isNode = isNode, filename = filename,
initialTypeInferenceOnly = initialTypeInferenceOnly,
control = control, reset = reset, returnCppClass = returnCppClass, where = where,
fromModel = fromModel, generatorName = uGN, alreadyAdded = alreadyAdded, showCompilerOutput = showCompilerOutput)
if(initialTypeInferenceOnly || returnCppClass) {
if(initialTypeInferenceOnly) { ## return only new NFprocs in this case.
thisGeneratorName <- environment(thisAns$nfGenerator)$name ## should be same as uGN
if(!(thisGeneratorName %in% oldKnownGeneratorNames)) ans[[ thisGeneratorName ]] <- thisAns
}
else ## they should all be new in this case anyway
ans[[ uGN ]] <- thisAns
} else {
ans[thisBool] <- thisAns
}
}
ans
},
compileNimbleFunction = function(fun, isNode = FALSE, filename = NULL, initialTypeInferenceOnly = FALSE,
control = list(debug = FALSE, debugCpp = FALSE, compileR = TRUE, writeFiles = TRUE, compileCpp = TRUE, loadSO = TRUE),
reset = FALSE, returnCppClass = FALSE, where = globalenv(), fromModel = FALSE, generatorName = NULL, alreadyAdded = FALSE, showCompilerOutput = getNimbleOption('showCompilerOutput')) {
if(is.character(fun)) {
tmp <- nimbleFunctions[[fun]]
if(is.null(tmp)) stop(paste0("nimbleFunction name ", fun, " not recognized in this project."), call. = FALSE)
if(reset) {
nf_getRefClassObject(tmp)$.CobjectInterface <- NULL
}
fun <- tmp
funList <- list(fun)
generatorName <- nfGetDefVar(fun, 'name')
if(reset) nfCompInfos[[generatorName]] <<- NULL
} else {
if(is.list(fun)) {
if(length(fun) == 0) stop('Empty list provided to compileNimbleFunction', call. = FALSE)
if(is.null(generatorName)) generatorName <- unique(unlist(lapply(fun, nfGetDefVar, 'name')))
if(length(generatorName) != 1) stop(paste0('Not all elements in the fun list for compileNimbleFunction are specialized from the same nimbleFunction. The generator names include:', paste(generatorName, collapse = ' ')), call. = FALSE)
if(reset) nfCompInfos[[generatorName]] <<- NULL
funList <- fun
} else {
if(!is.nf(fun)) stop(paste0("fun argument provided is not a nimbleFunction."), call. = FALSE)
funList <- list(fun)
generatorName <- nfGetDefVar(fun, 'name')
if(reset) nfCompInfos[[generatorName]] <<- NULL
}
if(!alreadyAdded) {
for(i in seq_along(funList)) {
addNF <- TRUE
thisName <- nf_getRefClassObject(funList[[i]])[['name']]
if(!is.null(thisName)) {
tmp <- nimbleFunctions[[thisName]]
if(!is.null(tmp)) {
if(reset) {
nimbleFunctions[[thisName]] <<- NULL
} else {
if(!identical(funList[[i]], tmp)) stop('Trying to compile something with same name as previously added nimbleFunction that is not the same thing')
addNF <- FALSE
}
}
}
if(addNF) {
addNimbleFunction(funList[[i]], fromModel = fromModel)
}
}
}
}
Cname <- nf_getRefClassObject(funList[[1]])$Cname
if(!exists('name', envir = nf_getRefClassObject(funList[[1]]), inherits = FALSE)) stop('Something is wrong if by this point in compileNimbleFunction there is no name.', call. = FALSE)
cppClass <- buildNimbleFunctionCompilationInfo(funList, isNode = isNode, initialTypeInferenceOnly = initialTypeInferenceOnly, control = control, where = where, fromModel = fromModel)
if(initialTypeInferenceOnly || returnCppClass) return(cppClass) ## cppClass is an nfProc in this case
## At this point we are ready to write, compile, load and instantiate.
## However the system for tracking these steps is not perfect.
## Specifically, if another nimbleFunction containing an object of the current nimbleFunction
## has already been compiled, then the files for the current one will have been written and
## compiled, but that status is not recorded in its nfCompInfos object.
## Also there could be other objects in the current funList that have not been instantiated.
## As a kludgy fix, we determine whether any of the objects already have a .CobjectInterface
## If they do, we skip over writing, compiling and loading steps.
hasCobjectInterface <- unlist(lapply(funList, function(x) {
RCO <- nf_getRefClassObject(x)
!(inherits(RCO$.CobjectInterface, 'uninitializedField') || is.null(RCO$.CobjectInterface))
}))
if(!any(hasCobjectInterface)) {
if(!nfCompInfos[[generatorName]]$written && control$writeFiles) {
cppProj <- cppProjectClass(dirName = dirName)
cppProjects[[ generatorName ]] <<- cppProj
if(is.null(filename)) filename <- paste0(projectName, '_', Rname2CppName(generatorName))
cppProj$addClass(cppClass, generatorName, filename)
cppProj$writeFiles(filename)
nfCompInfos[[generatorName]]$written <<- TRUE
} else {
if(!control$writeFiles) return(cppProj)
cppProj <- cppProjects[[ generatorName ]]
}
if(!nfCompInfos[[generatorName]]$cppCompiled && control$compileCpp) {
if(control$compileCpp) {
cppProj$compileFile(filename, showCompilerOutput)
nfCompInfos[[generatorName]]$cppCompiled <<- TRUE
} else writeLines('Skipping compilation because control$compileCpp is FALSE')
} else {if(!control$compileCpp) return(cppProj)}#writeLines('Using previously compiled C++ code.')
if(!nfCompInfos[[generatorName]]$loaded && control$loadSO) {
cppProj$loadSO(filename)
nfCompInfos[[generatorName]]$loaded <<- TRUE
} else{if(!control$loadSO) return(cppProj)}# writeLines('Using previously loaded compilation unit.')
}
ans <- vector('list', length(funList))
for(i in seq_along(funList)) {
if(!(hasCobjectInterface[i]))
ans[[i]] <- nfCompInfos[[generatorName]]$cppDef$buildCallable(funList[[i]], cppProj$dll, asTopLevel = TRUE)
else {
## A curious possibility: If a nf was built first nested in another nf,
## its interface may be a Cmulti interface, which is not directly user friendly
## But if we are here via compileNimbleFunction, the user has included it in the compile request and wants
## a full interface
## Hence we call promote interface which checks and builds a new one if needed
ans[[i]] <- nfCompInfos[[generatorName]]$cppDef$promoteCallable(funList[[i]]) ##nf_getRefClassObject(funList[[i]])$.CobjectInterface
}
}
##if(length(ans) == 1) ans[[1]] else ans
ans
}
)
)
#' Clear compiled objects from a project and unload shared library
#'
#' Clear all compiled objects from a project and unload the shared library produced by the C++ compiler. Has no effect on Windows.
#'
#' @param obj A compiled nimbleFunction or nimble model
#'
#' @details
#'
#' This will clear all compiled objects associated with your NIMBLE project. For example, if \code{cModel} is a compiled model, \code{clearCompiled(cModel)} will clear both the model and all associated nimbleFunctions such as compiled MCMCs that use that model.
#'
#' Use of this function can be dangerous. There is some risk that if you have copies of the R objects that interfaced to compiled C++ objects that have been removed, and you attempt to use those R objects after clearing their compiled counterparts, you will crash R. We have tried to minimize that risk, but we can't guarantee safe behavior.
#'
#' @export
clearCompiled <- function(obj) { # for now just take one obj as input
if(.Platform$OS.type != "windows") {
np <- getNimbleProject(obj)
np$clearCompiled()
}
}
#' compile NIMBLE models and nimbleFunctions
#'
#' compile a collection of models and nimbleFunctions: generate C++, compile the C++, load the result, and return an interface object
#'
#' @param ... An arbitrary set of NIMBLE models and nimbleFunctions, or lists of them. If given as named parameters, those names may be used in the return list.
#' @param project Optional NIMBLE model or nimbleFunction already associated with a project, which the current units for compilation should join. If not provided, a new project will be created and the current compilation units will be associated with it.
#' @param dirName Optional directory name in which to generate the C++ code. If not provided, a temporary directory will be generated using R's \code{tempdir} function.
#' @param projectName Optional character name for labeling the project if it is new
#' @param control A list mostly for internal use. See details.
#' @param resetFunctions Logical value stating whether nimbleFunctions associated with an existing project should all be reset for compilation purposes. See details.
#' @param showCompilerOutput Logical value indicating whether details of C++ compilation should be printed.
#' @author Perry de Valpine
#' @export
#' @details
#' This is the main function for calling the NIMBLE compiler. A set of compiler calls and output will be seen. Compiling in NIMBLE does 4 things:
#' 1. It generates C++ code files for all the model and nimbleFunction components. 2. It calls the system's C++ compiler. 3. It loads the compiled object(s) into R using \code{dyn.load}. And 4. it generates R objects for using the compiled model and nimbleFunctions.
#'
#' When the units for compilation provided in \code{...} include multiple models and/or nimbleFunctions, models are compiled first, in the order in which they are provided. Groups of nimbleFunctions that were specialized from the same nimbleFunction generator (the result of a call to \code{nimbleFunction}, which then takes setup arguments and returns a specialized nimbleFunction) are then compiled as a group, in the order of first appearance.
#'
#' The behavior of adding new compilation units to an existing project is limited. For example, one can compile a model in one call to \code{compileNimble} and then compile a nimbleFunction that uses the model (i.e. was given the model as a setup argument) in a second call to \code{compileNimble}, with the model provided as the \code{project} argument. Either the uncompiled or compiled model can be provided. However, compiling a second nimbleFunction and adding it to the same project will only work in limited circumstances. Basically, the limitations occur because it attempts to re-use already compiled pieces, but if these do not have all the necessary information for the new compilation, it gives up. An attempt has been made to give up in a controlled manner and provide somewhat informative messages.
#'
#' When compilation is not allowed or doesn't work, try using \code{resetFunctions = TRUE}, which will force recompilation of all nimbleFunctions in the new call. Previously compiled nimbleFunctions will be unaffected, and their R interface objects should continue to work. The only cost is additional compilation time for the current compilation call. If that doesn't work, try re-creating the model and/or the nimbleFunctions from their generators. An alternative possible fix is to compile multiple units in one call, rather than sequentially in multiple calls.
#'
#' The control list can contain the following named elements, each with \code{TRUE} or \code{FALSE}: debug, which sets a debug mode for the compiler for development purposes; debugCpp, which inserts an output message before every line of C++ code for debugging purposes; compileR, which determines whether the R-only steps of compilation should be executed; writeCpp, which determines whether the C++ files should be generated; compileCpp, which determines whether the C++ should be compiled; loadSO, which determines whether the DLL or shared object should be loaded and interfaced; and returnAsList, which determines whether calls to the compiled nimbleFunction should return only the returned value of the call (\code{returnAsList = FALSE}) or whether a list including the input arguments, possibly modified, should be returned in a list with the returned value of the call at the end (\code{returnAsList = TRUE}). The control list is mostly for developer use, although \code{returnAsArgs} may be useful to a user. An example of developer use is that one can have the compiler write the C++ files but not compile them, then modify them by hand, then have the C++ compiler do the subsequent steps without over-writing the files.
#'
#' See the NIMBLE \href{https://r-nimble.org/html_manual/cha-welcome-nimble.html}{User Manual} Manual for examples
#'
#' @return If there is only one compilation unit (one model or nimbleFunction), an R interface object is returned. This object can be used like the uncompiled model or nimbleFunction, but execution will call the corresponding compiled objects or functions. If there are multiple compilation units, they will be returned as a list of interface objects, in the order provided. If names were included in the arguments, or in a list if any elements of \code{...} are lists, those names will be used for the corresponding element of the returned list. Otherwise an attempt will be made to generate names from the argument code. For example \code{compileNimble(A = fun1, B = fun2, project = myModel)} will return a list with named elements A and B, while \code{compileNimble(fun1, fun2, project = myModel)} will return a list with named elements fun1 and fun2.
#'
#'
#'
compileNimble <- function(..., project, dirName = NULL, projectName = '',
control = list(),
resetFunctions = FALSE,
showCompilerOutput = getNimbleOption('showCompilerOutput')) {
## 1. Extract compilation items
reset <- FALSE
## This pulls out ... arguments, makes names from their expressions if names weren't provided, and combines them with any ... arguments that are lists.
controlDefaults = list(debug = FALSE, debugCpp = FALSE, compileR = TRUE, writeFiles = TRUE, compileCpp = TRUE, loadSO = TRUE, returnAsList = FALSE)
dotsDeparses <- unlist(lapply( substitute(list(...))[-1], deparse ))
origList <- list(...)
if(is.null(names(origList))) names(origList) <- rep('', length(origList))
boolNoName <- names(origList)==''
origIsList <- unlist(lapply(origList, is.list))
dotsDeparses[origIsList] <- ''
names(origList)[boolNoName] <- dotsDeparses[boolNoName]
units <- do.call('c', origList)
if(any(sapply(units, is, "MCMCconf")))
stop("You have provided an MCMC configuration object, which cannot be compiled. Instead, use run 'buildMCMC' on the configuration object and compile the resulting MCMC object.")
unitTypes <- getNimbleTypes(units)
if(length(grep('unknown', unitTypes)) > 0) stop(paste0('Some items provided for compilation do not have types that can be compiled: ', paste0(names(units), collapse = ' '), '. The types provided were: ', paste0(unitTypes, collapse = ' '), '. Be sure only specialized nimbleFunctions are provided, not nimbleFunction generators.'), call. = FALSE)
if(is.null(names(units))) names(units) <- rep('', length(units))
if(length(units) == 0) stop('No objects for compilation provided')
## 2. Get project or make new project
if(missing(project)) {
if(reset) warning("You requested 'reset = TRUE', but no project was provided. If you are trying to re-compiled something into the same project, give it as the project argument as well as a compilation item. For example, 'compileNimble(myFunction, project = myFunction, reset = TRUE)'.")
if(!is.null(getNimbleOption('nimbleProject'))) project <- getNimbleOption('nimbleProject')
else project <- nimbleProjectClass(dirName, name = projectName)
## Check for uncompiled models.
if(!any(sapply(units, is, 'RmodelBaseClass'))) {
mcmcUnits <- which(sapply(units, class) == "MCMC")
if(any(sapply(mcmcUnits, function(idx) {
class(units[[idx]]$model$CobjectInterface) == "uninitializedField"
})))
stop("compileNimble: The model associated with an MCMC is not compiled. Please compile the model first.")
}
} else {
project <- getNimbleProject(project, TRUE)
if(!inherits(project, 'nimbleProjectClass'))
stop("Invalid project argument; note that models and nimbleFunctions need to be compiled before they can be used to specify a project. Once compiled you can use an R model or nimbleFunction to specify the project.", call. = FALSE)
}
if(resetFunctions) project$resetFunctions()
for(i in names(controlDefaults)) {
if(!i %in% names(control)) control[[i]] <- controlDefaults[[i]]
}
## Units should be either Rmodel, nimbleFunction, or RCfunction (now coming from nimbleFunction with no setup)
if(!showCompilerOutput) {
messageIfVerbose("Compiling\n [Note] This may take a minute.\n [Note] Use 'showCompilerOutput = TRUE' to see C++ compilation details.")
}
if(showCompilerOutput) {
messageIfVerbose("Compiling\n [Note] This may take a minute.\n [Note] On some systems there may be some compiler warnings that can be safely ignored.")
}
## Compile models first
ans <- list()
rcfUnits <- unitTypes == 'rcf'
if(sum(rcfUnits) > 0) {
whichUnits <- which(rcfUnits)
for(i in whichUnits) {
if(isTRUE(getNimbleOption("enableDerivs"))) {
if(!isFALSE(environment(units[[i]])$nfMethodRCobject$buildDerivs))
stop(paste0("A nimbleFunction without setup code and with buildDerivs = TRUE can't be included\n",
"directly in a call to compileNimble. It can be called by another nimbleFunction and,\n",
"in that case, will be automatically compiled."))
}
ans[[i]] <- project$compileRCfun(units[[i]], control = control, showCompilerOutput = showCompilerOutput)
if(names(units)[i] != '') names(ans)[i] <- names(units)[i]
}
}
modelUnits <- unitTypes == 'model'
if(sum(modelUnits) > 0) {
whichUnits <- which(modelUnits)
for(i in whichUnits) {
ans[[ i ]] <- project$compileModel(units[[i]], control = control, showCompilerOutput = showCompilerOutput)
if(names(units)[i] != '') names(ans)[i] <- names(units)[i]
}
}
nfUnits <- unitTypes == 'nf'
if(sum(nfUnits) > 0) {
whichUnits <- which(nfUnits)
nfAns <- project$compileNimbleFunctionMulti(units[whichUnits], control = control,
reset = reset, showCompilerOutput = showCompilerOutput)
ans[whichUnits] <- nfAns
for(i in whichUnits) if(names(units)[i] != '') names(ans)[i] <- names(units)[i]
}
nlUnits <- unitTypes == 'nl'
if(sum(nlUnits) > 0) {
whichUnits <- which(nlUnits)
nlAns <- project$compileNimbleList(units[whichUnits], control = control, reset = reset)
ans[[whichUnits]] <- nlAns
for(i in whichUnits) if(names(units)[i] != '') names(ans)[i] <- names(units)[i]
}
if(length(ans) == 1) ans[[1]] else ans
}
getNimbleTypes <- function(units) {
ans <- character(length(units))
for(i in seq_along(units)) {
if(inherits(units[[i]], 'RmodelBaseClass')) ans[i] <- 'model'
else if(is.nf(units[[i]])) ans[i] <- 'nf' ## a nimbleFunction
else if(is.rcf(units[[i]])) ans[i] <- 'rcf' ## an RCfunction = a nimbleFunction with no setup
else if(is.nfGenerator(units[[i]])) ans[i] <- 'unknown(nf generator)'
else if(is.nl(units[[i]])) ans[i] <- 'nl' ## a nimbleList
else ans[i] <- 'unknown'
}
ans
}
# return the nimble project, if any, associated with a model or nimbleFunction object.
getNimbleProject <- function(project, stopOnNull = FALSE) {
if(inherits(project, 'nimbleProjectClass')) return(project)
if(is.nf(project)) return(nfVar(project, 'nimbleProject'))
if(is.rcf(project)) return(environment(project)$nfMethodRCobject$nimbleProject)
ans <- try(project$nimbleProject)
if(inherits(ans, 'try-error') | is.null(ans)) {
if(stopOnNull) stop(paste0('cannot determine nimbleProject from provided project argument'))
return(NULL)
}
ans
}
countDllObjects <- function() {
eval(call('.Call',nimbleUserNamespace$sessionSpecificDll$CountDllObjects))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.