Nothing
hpc <- hpc_data[1:150, c(2:5, 8)]
# to go from lm_object$x results to our format
format_x_for_test <- function(x, df = TRUE) {
x <- x[, colnames(x) != "(Intercept)", drop = FALSE]
if (df)
as.data.frame(x)
else
x
}
Puromycin_miss <- Puromycin
Puromycin_miss$state[20] <- NA
Puromycin_miss$conc[1] <- NA
# ------------------------------------------------------------------------------
# Testing formula -> xy conversion
test_that("numeric x and y", {
expected <- lm(mpg ~ ., data = mtcars, x = TRUE, y = TRUE)
observed <-
.convert_form_to_xy_fit(
mpg ~ .,
data = mtcars,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(mtcars$mpg, observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_null(observed$weights)
expect_null(observed$offset)
expect_equal(
mtcars[1:6,-1],
.convert_form_to_xy_new(
observed,
new_data = head(mtcars))$x
)
})
test_that("numeric x and y, subsetting", {
expected <- lm(mpg ~ ., data = mtcars, subset = hp > 170,
x = TRUE, y = TRUE)
observed <-
.convert_form_to_xy_fit(
mpg ~ .,
data = mtcars,
subset = hp > 170,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(mtcars$mpg[mtcars$hp > 170], observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_null(observed$weights)
expect_null(observed$offset)
# subset does not affect newdata calcs
})
test_that("numeric x and y, weights", {
expected <- lm(mpg ~ . -disp, data = mtcars, weights = disp,
x = TRUE, y = TRUE)
observed <-
.convert_form_to_xy_fit(
mpg ~ . - disp,
data = mtcars,
weights = disp,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(mtcars$mpg, observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_equal(mtcars$disp, observed$weights)
expect_null(observed$offset)
})
test_that("numeric x and y, offset in-line", {
expected <- lm(mpg ~ cyl + hp + offset(log(disp)),
data = mtcars,
x = TRUE,
y = TRUE)
observed <-
.convert_form_to_xy_fit(
mpg ~ cyl + hp + offset(log(disp)),
data = mtcars,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(mtcars$mpg, observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_equal(log(mtcars$disp), observed$offset)
expect_null(observed$weights)
new_obs <-
.convert_form_to_xy_new(observed, new_data = mtcars[1:6, ])
expect_equal(mtcars[1:6, c("cyl", "hp")], new_obs$x)
expect_equal(log(mtcars$disp)[1:6], new_obs$offset)
})
test_that("numeric x and y, multiple offsets in-line", {
expected <- lm(
mpg ~ cyl + hp + offset(log(disp)) + offset(qsec),
data = mtcars,
x = TRUE,
y = TRUE
)
observed <-
.convert_form_to_xy_fit(
mpg ~ cyl + hp + offset(log(disp)) +
offset(qsec),
data = mtcars,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(mtcars$mpg, observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_equal(log(mtcars$disp) + mtcars$qsec, observed$offset)
expect_null(observed$weights)
new_obs <-
.convert_form_to_xy_new(observed, new_data = mtcars[1:6, ])
expect_equal(mtcars[1:6, c("cyl", "hp")], new_obs$x)
expect_equal(log(mtcars$disp)[1:6] + mtcars$qsec[1:6],
new_obs$offset)
})
test_that("numeric x and y, no intercept", {
expected <- lm(mpg ~ 0 + .,
data = mtcars,
x = TRUE,
y = TRUE)
observed <-
.convert_form_to_xy_fit(
mpg ~ 0 + .,
data = mtcars,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(mtcars$mpg, observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_null(observed$offset)
expect_null(observed$weights)
expect_equal(mtcars[1:6,-1],
.convert_form_to_xy_new(observed, new_data = head(mtcars))$x)
})
test_that("numeric x and y, inline functions", {
expected <- lm(log(mpg) ~ hp + poly(wt, 3),
data = mtcars,
x = TRUE,
y = TRUE)
observed <-
.convert_form_to_xy_fit(
log(mpg) ~ hp + poly(wt, 3),
data = mtcars,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(log(mtcars$mpg), observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_null(observed$offset)
expect_null(observed$weights)
expect_equal(
format_x_for_test(model.matrix(expected$terms, head(mtcars))),
.convert_form_to_xy_new(observed, new_data = head(mtcars))$x
)
})
test_that("numeric y and mixed x", {
expected <- lm(rate ~ ., data = Puromycin, x = TRUE, y = TRUE)
observed <-
.convert_form_to_xy_fit(
rate ~ .,
data = Puromycin,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(Puromycin$rate, observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_null(observed$weights)
expect_null(observed$offset)
expect_equal(
format_x_for_test(model.matrix(expected$terms, head(Puromycin))),
.convert_form_to_xy_new(observed, new_data = head(Puromycin))$x
)
})
test_that("mixed x, no dummies, compare to a model that does not create dummies", {
expected <- rpart::rpart(rate ~ ., data = Puromycin)
data_classes <- attr(expected$terms, "dataClasses")[2:3]
observed <-
.convert_form_to_xy_fit(
rate ~ .,
data = Puromycin,
indicators = "none",
remove_intercept = TRUE
)
expect_equal(names(data_classes), names(observed$x))
expect_equal(unname(data_classes), c("numeric", "factor"))
expect_s3_class(observed$x$state, "factor")
expect_equal(Puromycin$rate, observed$y)
expect_equal(expected$terms, observed$terms)
expect_null(observed$weights)
expect_null(observed$offset)
})
test_that("numeric y and mixed x, omit missing data", {
expected <- lm(rate ~ ., data = Puromycin_miss, x = TRUE, y = TRUE)
observed <-
.convert_form_to_xy_fit(
rate ~ .,
data = Puromycin_miss,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(Puromycin_miss$rate[complete.cases(Puromycin_miss)],
observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_null(observed$weights)
expect_null(observed$offset)
expect_equal(
format_x_for_test(model.matrix(expected$terms, head(Puromycin_miss))),
.convert_form_to_xy_new(
observed,
new_data = head(Puromycin_miss),
na.action = na.omit
)$x
)
})
test_that("numeric y and mixed x, include missing data", {
frame_obj <- model.frame(rate ~ .,
data = Puromycin_miss,
na.action = na.pass)
expected <- model.matrix(rate ~ ., frame_obj)
observed <- .convert_form_to_xy_fit(
rate ~ .,
data = Puromycin_miss,
na.action = na.pass,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected), observed$x)
expect_equal(
format_x_for_test(head(expected)),
.convert_form_to_xy_new(
observed,
new_data = head(Puromycin_miss),
na.action = na.pass
)$x
)
})
test_that("numeric y and mixed x, fail missing data", {
expect_snapshot(
error = TRUE,
.convert_form_to_xy_fit(
rate ~ .,
data = Puromycin_miss,
na.action = na.fail,
indicators = "traditional",
remove_intercept = TRUE
)
)
})
test_that("numeric y and mixed x, no dummies", {
expected <- model.frame(rate ~ ., data = Puromycin)[,-1]
observed <-
.convert_form_to_xy_fit(
rate ~ .,
data = Puromycin,
indicators = "none",
remove_intercept = TRUE
)
expect_equal(expected, observed$x)
expect_equal(
format_x_for_test(head(expected)),
.convert_form_to_xy_new(observed, new_data = head(Puromycin))$x
)
})
test_that("numeric x and numeric multivariate y", {
expected <- lm(cbind(mpg, disp) ~ .,
data = mtcars,
x = TRUE,
y = TRUE)
observed <-
.convert_form_to_xy_fit(
cbind(mpg, disp) ~ .,
data = mtcars,
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(mtcars[, c("mpg", "disp")], observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_null(observed$weights)
expect_null(observed$offset)
expect_equal(mtcars[1:6,-c(1, 3)],
.convert_form_to_xy_new(observed, new_data = head(mtcars))$x)
})
test_that("numeric x and factor y", {
expect_snapshot(
expected <-
glm(class ~ ., data = hpc, x = TRUE, y = TRUE, family = binomial())
)
observed <- .convert_form_to_xy_fit(class ~ ., data = hpc)
expect_equal(format_x_for_test(expected$x), observed$x)
expect_equal(hpc$class, observed$y)
expect_equal(expected$terms, observed$terms)
expect_equal(expected$xlevels, observed$xlevels)
expect_null(observed$weights)
expect_null(observed$offset)
expect_equal(
head(format_x_for_test(expected$x)),
.convert_form_to_xy_new(observed, new_data = head(hpc))$x
)
expect_no_error(
observed2 <- .convert_form_to_xy_fit(class ~ ., data = hpc %>% mutate(x = NA))
)
expect_equal(hpc$class[logical()], observed2$y)
expect_s3_class(observed2$terms, "terms")
expect_equal(expected$xlevels, observed2$xlevels)
expect_null(observed2$weights)
expect_null(observed2$offset)
})
test_that("bad args", {
expect_snapshot(
error = TRUE,
.convert_form_to_xy_fit(
mpg ~ ., data = mtcars,
composition = "tibble",
indicators = "traditional",
remove_intercept = TRUE
)
)
expect_snapshot(
error = TRUE,
.convert_form_to_xy_fit(
mpg ~ ., data = mtcars,
weights = letters[1:nrow(mtcars)],
indicators = "traditional",
remove_intercept = TRUE
)
)
})
test_that("numeric x and y, matrix composition", {
expected <- lm(mpg ~ ., data = mtcars, x = TRUE, y = TRUE)
observed <-
.convert_form_to_xy_fit(
mpg ~ .,
data = mtcars,
composition = "matrix",
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x, df = FALSE), observed$x)
expect_equal(mtcars$mpg, observed$y)
new_obs <-
.convert_form_to_xy_new(observed,
new_data = head(mtcars),
composition = "matrix")
expect_equal(as.matrix(mtcars[1:6,-1]), new_obs$x)
})
test_that("numeric x and multivariate y, matrix composition", {
expected <-
lm(cbind(mpg, cyl) ~ .,
data = mtcars,
x = TRUE,
y = TRUE)
observed <-
.convert_form_to_xy_fit(
cbind(mpg, cyl) ~ .,
data = mtcars,
composition = "matrix",
indicators = "traditional",
remove_intercept = TRUE
)
expect_equal(format_x_for_test(expected$x, df = FALSE), observed$x)
expect_equal(expected$y, observed$y)
new_obs <-
.convert_form_to_xy_new(observed,
new_data = head(mtcars),
composition = "matrix")
expect_equal(as.matrix(mtcars[1:6,-(1:2)]), new_obs$x)
})
test_that("global `contrasts` option is respected", {
contrasts <- getOption("contrasts")
contrasts["unordered"] <- "contr.helmert"
rlang::local_options(contrasts = contrasts)
# Fit time
fit_result <- .convert_form_to_xy_fit(
num_pending ~ class + compounds,
data = hpc
)
fit_data <- fit_result$x
expect_identical(names(fit_data), c("class1", "class2", "class3", "compounds"))
expect_true(all(fit_data$class1 %in% c(-1, 0, 1)))
# Predict time
predict_result <- .convert_form_to_xy_new(fit_result, hpc)
predict_data <- predict_result$x
expect_identical(names(predict_data), c("class1", "class2", "class3", "compounds"))
expect_true(all(predict_data$class1 %in% c(-1, 0, 1)))
})
# ------------------------------------------------------------------------------
# Testing xy -> formula conversion
test_that("data frame x, vector y", {
observed <-
.convert_xy_to_form_fit(mtcars[, -1], mtcars$mpg, remove_intercept = TRUE)
expected <- mtcars[, c(2:11, 1)]
names(expected)[11] <- "..y"
expect_equal(expected, observed$data)
expect_equal(formula("..y ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(mtcars)[-1], observed$x_var)
expect_null(observed$weights)
expect_equal(mtcars[1:6, -1],
.convert_xy_to_form_new(observed, new_data = head(mtcars[,-1])))
})
test_that("matrix x, vector y", {
observed <-
.convert_xy_to_form_fit(as.matrix(mtcars[,-1]), mtcars$mpg,
remove_intercept = TRUE)
expected <- mtcars[, c(2:11, 1)]
names(expected)[11] <- "..y"
expect_equal(expected, observed$data)
expect_equal(formula("..y ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(mtcars)[-1], observed$x_var)
expect_null(observed$weights)
expect_equal(
mtcars[1:6,-1],
.convert_xy_to_form_new(observed, new_data = as.matrix(mtcars[1:6, -1]))
)
})
test_that("data frame x, 1 col data frame y", {
observed <-
.convert_xy_to_form_fit(mtcars[, -1], mtcars[, "mpg", drop = FALSE],
remove_intercept = TRUE)
expected <- mtcars[, c(2:11, 1)]
expect_equal(expected, observed$data)
expect_equal(formula("mpg ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(mtcars)[-1], observed$x_var)
expect_null(observed$weights)
})
test_that("matrix x, 1 col matrix y", {
observed <-
.convert_xy_to_form_fit(as.matrix(mtcars[,-1]),
as.matrix(mtcars[, "mpg", drop = FALSE]),
remove_intercept = TRUE)
expected <- mtcars[, c(2:11, 1)]
expect_equal(expected, observed$data)
expect_equal(formula("mpg ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(mtcars)[-1], observed$x_var)
expect_null(observed$weights)
})
test_that("matrix x, 1 col data frame y", {
observed <-
.convert_xy_to_form_fit(as.matrix(mtcars[,-1]),
mtcars[, "mpg", drop = FALSE],
remove_intercept = TRUE)
expected <- mtcars[, c(2:11, 1)]
expect_equal(expected, observed$data)
expect_equal(formula("mpg ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(mtcars)[-1], observed$x_var)
expect_null(observed$weights)
})
test_that("data frame x, 1 col matrix y", {
observed <-
.convert_xy_to_form_fit(mtcars[,-1],
as.matrix(mtcars[, "mpg", drop = FALSE]),
remove_intercept = TRUE)
expected <- mtcars[, c(2:11, 1)]
expect_equal(expected, observed$data)
expect_equal(formula("mpg ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(mtcars)[-1], observed$x_var)
expect_null(observed$weights)
})
test_that("data frame x, 2 col data frame y", {
observed <-
.convert_xy_to_form_fit(mtcars[,-(1:2)], mtcars[, 1:2],
remove_intercept = TRUE)
expected <- mtcars[, c(3:11, 1:2)]
expect_equal(expected, observed$data)
expect_equal(formula("cbind(mpg, cyl) ~ ."),
observed$formula,
ignore_formula_env = TRUE)
expect_equal(names(mtcars)[-(1:2)], observed$x_var)
expect_null(observed$weights)
})
test_that("matrix x, 2 col matrix y", {
observed <-
.convert_xy_to_form_fit(as.matrix(mtcars[,-(1:2)]),
as.matrix(mtcars[, 1:2]),
remove_intercept = TRUE)
expected <- mtcars[, c(3:11, 1:2)]
expect_equal(expected, observed$data)
expect_equal(formula("cbind(mpg, cyl) ~ ."),
observed$formula,
ignore_formula_env = TRUE)
expect_equal(names(mtcars)[-(1:2)], observed$x_var)
expect_null(observed$weights)
})
test_that("1 col data frame x, 1 col data frame y", {
observed <- .convert_xy_to_form_fit(mtcars[, 2, drop = FALSE],
mtcars[, 1, drop = FALSE],
remove_intercept = TRUE)
expected <- mtcars[, 2:1]
expect_equal(expected, observed$data)
expect_equal(formula("mpg ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(mtcars)[2], observed$x_var)
expect_null(observed$weights)
})
# weights
test_that("1 col matrix x, 1 col matrix y", {
observed <- .convert_xy_to_form_fit(
as.matrix(mtcars[, 2, drop = FALSE]),
as.matrix(mtcars[, 1, drop = FALSE]),
remove_intercept = TRUE
)
expected <- mtcars[, 2:1]
expect_equal(expected, observed$data)
expect_equal(formula("mpg ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(mtcars)[2], observed$x_var)
expect_null(observed$weights)
})
test_that("matrix x, factor y", {
observed <- .convert_xy_to_form_fit(as.matrix(hpc[, -5]), hpc$class)
expected <- as.data.frame(hpc)
names(expected)[5] <- "..y"
expect_equal(expected, observed$data)
expect_equal(formula("..y ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(hpc)[-5], observed$x_var)
expect_null(observed$weights)
})
test_that("data frame x, factor y", {
observed <- .convert_xy_to_form_fit(hpc[, -5], hpc$class)
expected <- hpc
names(expected)[5] <- "..y"
expect_equal(expected, observed$data)
expect_equal(formula("..y ~ ."), observed$formula, ignore_formula_env = TRUE)
expect_equal(names(hpc)[-5], observed$x_var)
expect_null(observed$weights)
})
test_that("bad args", {
expect_snapshot(
error = TRUE,
.convert_xy_to_form_fit(mtcars$disp, mtcars$mpg, remove_intercept = TRUE)
)
expect_snapshot(
error = TRUE,
.convert_xy_to_form_fit(mtcars[, 1:3], mtcars[, 2:5], remove_intercept = TRUE)
)
})
## -----------------------------------------------------------------------------
test_that("convert to matrix", {
expect_true(inherits(parsnip::maybe_matrix(mtcars), "matrix"))
expect_true(inherits(parsnip::maybe_matrix(tibble::as_tibble(mtcars)), "matrix"))
expect_true(inherits(parsnip::maybe_matrix(as.matrix(mtcars)), "matrix"))
expect_true(
inherits(parsnip::maybe_matrix(Matrix::Matrix(as.matrix(mtcars), sparse = TRUE)),
"dgCMatrix")
)
data(ames, package = "modeldata")
expect_snapshot(
error = TRUE,
parsnip::maybe_matrix(ames[, c("Year_Built", "Neighborhood")])
)
# Also for date columns
data(Chicago, package = "modeldata")
expect_snapshot(
error = TRUE,
parsnip::maybe_matrix(Chicago[, c("ridership", "date")])
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.