Nothing
hpc <- hpc_data[1:150, c(2:5, 8)]
# ------------------------------------------------------------------------------
basic_mod <-
linear_reg() %>%
set_engine("keras", epochs = 50, verbose = 0)
ridge_mod <-
linear_reg(penalty = 0.1) %>%
set_engine("keras", epochs = 50, verbose = 0)
ctrl <- control_parsnip(verbosity = 0, catch = FALSE)
# ------------------------------------------------------------------------------
test_that('model fitting', {
skip_on_cran()
skip_if_not_installed("keras")
skip_if(!is_tf_ok())
set_tf_seed(257)
expect_no_condition(
fit1 <-
fit_xy(
basic_mod,
control = ctrl,
x = hpc[,2:4],
y = hpc$compounds
)
)
set_tf_seed(257)
expect_no_condition(
fit2 <-
fit_xy(
basic_mod,
control = ctrl,
x = hpc[,2:4],
y = hpc$compounds
)
)
expect_equal(
unlist(keras::get_weights(extract_fit_engine(fit1))),
unlist(keras::get_weights(extract_fit_engine(fit2))),
tolerance = .1
)
expect_no_condition(
fit(
basic_mod,
compounds ~ .,
data = hpc[, -5],
control = ctrl
)
)
expect_no_condition(
fit1 <-
fit_xy(
ridge_mod,
control = ctrl,
x = hpc[,2:4],
y = hpc$compounds
)
)
expect_no_condition(
fit(
ridge_mod,
compounds ~ .,
data = hpc[, -5],
control = ctrl
)
)
})
test_that('regression prediction', {
skip_on_cran()
skip_if_not_installed("keras")
skip_if(!is_tf_ok())
library(keras)
set.seed(257)
lm_fit <-
fit_xy(
basic_mod,
control = ctrl,
x = hpc[,2:4],
y = hpc$compounds
)
keras_pred <-
predict(extract_fit_engine(lm_fit), as.matrix(hpc[1:3,2:4]))
colnames(keras_pred) <- ".pred"
keras_pred <-
keras_pred %>%
as_tibble()
parsnip_pred <- predict(lm_fit, hpc[1:3,2:4])
expect_equal(as.data.frame(keras_pred), as.data.frame(parsnip_pred))
set.seed(257)
rr_fit <-
fit_xy(
ridge_mod,
control = ctrl,
x = hpc[,2:4],
y = hpc$compounds
)
keras_pred <- predict(extract_fit_engine(rr_fit), as.matrix(hpc[1:3,2:4]))
colnames(keras_pred) <- ".pred"
keras_pred <- tibble::as_tibble(keras_pred)
parsnip_pred <- predict(rr_fit, hpc[1:3,2:4])
expect_equal(as.data.frame(keras_pred), as.data.frame(parsnip_pred))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.