Nothing
hpc <- hpc_data[1:150, c(2:5, 8)]
num_pred <- names(hpc)[1:4]
hpc_nnet <-
mlp(mode = "classification", hidden_units = 5) %>%
set_engine("nnet")
# ------------------------------------------------------------------------------
test_that('nnet execution, classification', {
skip_if_not_installed("nnet")
expect_no_condition(
res <- parsnip::fit(
hpc_nnet,
class ~ compounds + input_fields,
data = hpc,
control = ctrl
)
)
expect_no_condition(
res <- parsnip::fit_xy(
hpc_nnet,
x = hpc[, num_pred],
y = hpc$class,
control = ctrl
)
)
expect_snapshot(
error = TRUE,
res <- parsnip::fit(
hpc_nnet,
class ~ novar,
data = hpc,
control = ctrl
)
)
})
test_that('nnet classification prediction', {
skip_if_not_installed("nnet")
xy_fit <- fit_xy(
hpc_nnet,
x = hpc[, num_pred],
y = hpc$class,
control = ctrl
)
xy_pred <- predict(extract_fit_engine(xy_fit), newdata = hpc[1:8, num_pred], type = "class")
xy_pred <- factor(xy_pred, levels = levels(hpc$class))
expect_equal(xy_pred, predict(xy_fit, new_data = hpc[1:8, num_pred], type = "class")$.pred_class)
form_fit <- fit(
hpc_nnet,
class ~ .,
data = hpc,
control = ctrl
)
form_pred <- predict(extract_fit_engine(form_fit), newdata = hpc[1:8, num_pred], type = "class")
form_pred <- factor(form_pred, levels = levels(hpc$class))
expect_equal(form_pred, predict(form_fit, new_data = hpc[1:8, num_pred])$.pred_class)
})
# ------------------------------------------------------------------------------
num_pred <- names(mtcars)[3:6]
car_basic <-
mlp(mode = "regression") %>%
set_engine("nnet")
bad_nnet_reg <-
mlp(mode = "regression") %>%
set_engine("nnet", min.node.size = -10)
bad_rf_reg <-
mlp(mode = "regression") %>%
set_engine("nnet", sampsize = -10)
# ------------------------------------------------------------------------------
test_that('nnet execution, regression', {
skip_if_not_installed("nnet")
expect_no_condition(
res <- parsnip::fit(
car_basic,
mpg ~ .,
data = mtcars,
control = ctrl
)
)
expect_no_condition(
res <- parsnip::fit_xy(
car_basic,
x = mtcars[, num_pred],
y = mtcars$mpg,
control = ctrl
)
)
})
test_that('nnet regression prediction', {
skip_if_not_installed("nnet")
xy_fit <- fit_xy(
car_basic,
x = mtcars[, -1],
y = mtcars$mpg,
control = ctrl
)
xy_pred <- predict(extract_fit_engine(xy_fit), newdata = mtcars[1:8, -1])[,1]
xy_pred <- unname(xy_pred)
expect_equal(xy_pred, predict(xy_fit, new_data = mtcars[1:8, -1])$.pred)
form_fit <- fit(
car_basic,
mpg ~ .,
data = mtcars,
control = ctrl
)
form_pred <- predict(extract_fit_engine(form_fit), newdata = mtcars[1:8, -1])[,1]
form_pred <- unname(form_pred)
expect_equal(form_pred, predict(form_fit, new_data = mtcars[1:8, -1])$.pred)
})
# ------------------------------------------------------------------------------
nn_dat <- read.csv("nnet_test.txt")
test_that('multivariate nnet formula', {
skip_if_not_installed("nnet")
nnet_form <-
mlp(
mode = "regression",
hidden_units = 3,
penalty = 0.01
) %>%
set_engine("nnet") %>%
parsnip::fit(
cbind(V1, V2, V3) ~ .,
data = nn_dat[-(1:5),]
)
expect_false(has_multi_predict(nnet_form))
expect_equal(multi_predict_args(nnet_form), NA_character_)
expect_equal(length(extract_fit_engine(nnet_form)$wts), 24)
nnet_form_pred <- predict(nnet_form, new_data = nn_dat[1:5, -(1:3)])
expect_equal(names(nnet_form_pred), paste0(".pred_", c("V1", "V2", "V3")))
nnet_xy <-
mlp(
mode = "regression",
hidden_units = 3,
penalty = 0.01
) %>%
set_engine("nnet") %>%
parsnip::fit_xy(
x = nn_dat[-(1:5), -(1:3)],
y = nn_dat[-(1:5), 1:3 ]
)
expect_equal(length(extract_fit_engine(nnet_xy)$wts), 24)
nnet_form_xy <- predict(nnet_xy, new_data = nn_dat[1:5, -(1:3)])
expect_equal(names(nnet_form_xy), paste0(".pred_", c("V1", "V2", "V3")))
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.