Nothing
# For issue #653 we want to be able to re-run the registration code as
# long as the information being registered is the same.
test_that('re-registration of mode', {
old_val <- get_from_env("bart_modes")
expect_no_condition(set_model_mode("bart", "classification"))
new_val <- get_from_env("bart_modes")
expect_equal(old_val, new_val)
})
test_that('re-registration of engine', {
old_val <- get_from_env("bart")
expect_no_condition(
set_model_engine("bart", mode = "classification", eng = "dbarts")
)
new_val <- get_from_env("bart")
expect_equal(old_val, new_val)
})
test_that('re-registration of package dependencies', {
old_val <- get_from_env("bart_pkgs")
expect_no_error(expect_no_warning(
set_dependency("bart", "dbarts", "dbarts")
))
new_val <- get_from_env("bart_pkgs")
expect_equal(old_val, new_val)
})
test_that('re-registration of fit information', {
old_val <- get_from_env("bart_fit")
expect_no_condition(
set_fit(
model = "bart",
eng = "dbarts",
mode = "regression",
value = list(
interface = "data.frame",
data = c(x = "x.train", y = "y.train"),
protect = c("x", "y"),
func = c(pkg = "dbarts", fun = "bart"),
defaults = list(verbose = FALSE, keeptrees = TRUE, keepcall = FALSE)
)
)
)
new_val <- get_from_env("bart_fit")
expect_equal(old_val, new_val)
# Fail if newly registered data is different than existing
# `verbose` option is different here
expect_snapshot(
error = TRUE,
set_fit(
model = "bart",
eng = "dbarts",
mode = "regression",
value = list(
interface = "data.frame",
data = c(x = "x.train", y = "y.train"),
protect = c("x", "y"),
func = c(pkg = "dbarts", fun = "bart"),
defaults = list(verbose = TRUE, keeptrees = TRUE, keepcall = FALSE)
)
)
)
})
test_that('re-registration of encoding information', {
old_val <- get_from_env("bart_encoding")
expect_no_condition(
set_encoding(
model = "bart",
eng = "dbarts",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = FALSE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
)
new_val <- get_from_env("bart_encoding")
expect_equal(old_val, new_val)
# Fail if newly registered data is different than existing
# `compute_intercept` option is different here
expect_snapshot(
error = TRUE,
set_encoding(
model = "bart",
eng = "dbarts",
mode = "regression",
options = list(
predictor_indicators = "none",
compute_intercept = TRUE,
remove_intercept = FALSE,
allow_sparse_x = FALSE
)
)
)
})
test_that('re-registration of prediction information', {
old_val <- get_from_env("bart_predict")
expect_no_condition(
set_pred(
model = "bart",
eng = "dbarts",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = quote(object),
new_data = quote(new_data),
type = "numeric"
)
)
)
)
new_val <- get_from_env("bart_predict")
expect_equal(old_val, new_val)
# Fail if newly registered data is different than existing
# `type` option is different here
expect_snapshot(
error = TRUE,
set_pred(
model = "bart",
eng = "dbarts",
mode = "regression",
type = "numeric",
value = list(
pre = NULL,
post = NULL,
func = c(pkg = "parsnip", fun = "dbart_predict_calc"),
args =
list(
obj = quote(object),
new_data = quote(new_data),
type = "tuba"
)
)
)
)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.