R/plot.prodlim.R

Defines functions plot.prodlim

Documented in plot.prodlim

# {{{ Header
#' Plotting event probabilities over time
#' 
#' Function to plot survival probabilities or absolute risks (cumulative incidence function) against time.
#' 
#' From version 1.1.3 on the arguments legend.args, atrisk.args, confint.args
#' are obsolete and only available for backward compatibility. Instead
#' arguments for the invoked functions \code{atRisk}, \code{legend},
#' \code{confInt}, \code{markTime}, \code{axis} are simply specified as
#' \code{atrisk.cex=2}. The specification is not case sensitive, thus
#' \code{atRisk.cex=2} or \code{atRISK.cex=2} will have the same effect.  The
#' function \code{axis} is called twice, and arguments of the form
#' \code{axis1.labels}, \code{axis1.at} are used for the time axis whereas
#' \code{axis2.pos}, \code{axis1.labels}, etc. are used for the y-axis.
#' 
#' These arguments are processed via \code{\dots{}} of \code{plot.prodlim} and
#' inside by using the function \code{SmartControl}.  Documentation of these
#' arguments can be found in the help pages of the corresponding functions.
#' 
#' @aliases plot.prodlim lines.prodlim
#' @param x an object of class `prodlim' as returned by the
#'     \code{prodlim} function.
#' @param type Either \code{"surv"} or \code{"risk"} AKA \code{"cuminc"}. Controls what
#' part of the object is plotted.  Defaults to \code{object$type}.
#' @param cause For competing risk models. Character (other classes are converted with \code{as.character}).
#' The argument \code{cause} determines the event of interest. Currently one cause is allowed at a time, but you can
#' call the function again with \code{add=TRUE} to add the lines of the other
#' causes. Also, if \code{cause="stacked"} is specified the absolute risks of all causes are stacked.
#' @param select Select which lines to plot. This can be used when
#'     there are many strata or many competing risks to select a
#'     subset of the lines.  However, a more clean way to select
#'     covariate strata is to use the argument \code{newdata}. Another
#'     application is when there are several competing risks and the 
#'      stacked plot (\code{cause="stacked"}) should only show a selected subset
#'     of the available causes.
#' @param newdata a data frame containing covariate strata for which
#'     to show curves. When omitted element \code{X} of object
#'     \code{x} is used.
#' @param add if \code{TRUE} curves are added to an existing plot.
#' @param col color for curves. Default is \code{1:number(curves)}
#' @param lty line type for curves. Default is 1.
#' @param lwd line width for all curves. Default is 3.
#' @param ylim limits of the y-axis
#' @param xlim limits of the x-axis
#' @param ylab label for the y-axis
#' @param xlab label for the x-axis
#' @param num.digits Number of digits when rounding off numerical values for legend and at-risk tables.
#' @param timeconverter The following options are supported:
#'  "days2years" (conversion factor: 1/365.25)
#'  "months2years" (conversion factor: 1/12)
#'  "days2months" (conversion factor 1/30.4368499)
#'  "years2days" (conversion factor 365.25)
#'  "years2months" (conversion factor 12)
#'   "months2days" (conversion factor 30.4368499)
#' @param legend if TRUE a legend is plotted by calling the function
#'     legend.  Optional arguments of the function \code{legend} can
#'     be given in the form \code{legend.x=val} where x is the name of
#'     the argument and val the desired value. See also Details.
#' @param short.labels Logical. When \code{FALSE} construct labels as cause=1, var1=v1, var2=v2 else as 1, v1, v2.
#' @param logrank If TRUE, the logrank p-value will be extracted from
#'     a call to \code{survdiff} and added to the legend. This works
#'     only for survival models, i.e. Kaplan-Meier with discrete
#'     predictors.
#' @param marktime if TRUE the curves are tick-marked at right
#'     censoring times by invoking the function
#'     \code{markTime}. Optional arguments of the function
#'     \code{markTime} can be given in the form \code{confint.x=val}
#'     as with legend. See also Details.
#' @param confint if TRUE pointwise confidence intervals are plotted
#'     by invoking the function \code{confInt}. Optional arguments of
#'     the function \code{confInt} can be given in the form
#'     \code{confint.x=val} as with legend.  See also Details.
#' @param automar If TRUE the function trys to find suitable values
#'     for the figure margins around the main plotting region.
#' @param atrisk if TRUE display numbers of subjects at risk by
#'     invoking the function \code{atRisk}. Optional arguments of the
#'     function \code{atRisk} can be given in the form
#'     \code{atrisk.x=val} as with legend. See also Details.
#' @param timeOrigin Start of the time axis
#' @param axes If true axes are drawn. See details.
#' @param background If \code{TRUE} the background color and grid
#'     color can be controlled using smart arguments SmartControl,
#'     such as background.bg="yellow" or
#'     background.bg=c("gray66","gray88").  The following defaults are
#'     passed to \code{background} by \code{plot.prodlim}:
#'     horizontal=seq(0,1,.25), vertical=NULL, bg="gray77",
#'     fg="white".  See \code{background} for all arguments, and the
#'     examples below.
#' @param percent If true the y-axis is labeled in percent.
#' @param minAtrisk Integer. Show the curve only until the number
#'     at-risk is at least \code{minAtrisk}
#' @param limit When newdata is not specified and the number of lines
#'     in element \code{X} of object \code{x} exceeds limits, only the
#'     results for covariate constellations of the first, the middle
#'     and the last row in \code{X} are shown. Otherwise all lines of
#'     \code{X} are shown.
#' @param ... Parameters that are filtered by
#'     \code{\link{SmartControl}} and then passed to the functions
#'     \code{\link{plot}}, \code{\link{legend}}, \code{\link{axis}},
#'     \code{\link{atRisk}}, \code{\link{confInt}},
#'     \code{\link{markTime}}, \code{\link{backGround}}
#' @return The (invisible) object.
#' @author Thomas Alexander Gerds <tag@@biostat.ku.dk>
#' @seealso \code{\link{plot}}, \code{\link{legend}},
#'     \code{\link{axis}},
#'     \code{\link{prodlim}},\code{\link{plot.Hist}},\code{\link{summary.prodlim}},
#'     \code{\link{neighborhood}}, \code{\link{atRisk}},
#'     \code{\link{confInt}}, \code{\link{markTime}},
#'     \code{\link{backGround}}
#' @keywords survival
##' @examples
##' ## simulate right censored data from a two state model 
##' set.seed(100)
##' dat <- SimSurv(100)
##' # with(dat,plot(Hist(time,status)))
##' 
##' ### marginal Kaplan-Meier estimator
##' kmfit <- prodlim(Hist(time, status) ~ 1, data = dat)
##' plot(kmfit)
##' plot(kmfit,atrisk.show.censored=1L,atrisk.at=seq(0,12,3))
##' plot(kmfit,timeconverter="years2months")
##' 
##' # change time range
##' plot(kmfit,xlim=c(0,4))
##' 
##' # change scale of y-axis
##' plot(kmfit,percent=FALSE)
##' 
##' # mortality instead of survival
##' plot(kmfit,type="risk")
##' 
##' # change axis label and position of ticks
##' plot(kmfit,
##'      xlim=c(0,10),
##'      axis1.at=seq(0,10,1),
##'      axis1.labels=0:10,
##'      xlab="Years",
##'      axis2.las=2,
##'      atrisk.at=seq(0,10,2.5),
##'      atrisk.title="")
##' 
##' # change background color
##' plot(kmfit,
##'      xlim=c(0,10),
##'      confint.citype="shadow",
##'      col=1,
##'      axis1.at=0:10,
##'      axis1.labels=0:10,
##'      xlab="Years",
##'      axis2.las=2,
##'      atrisk.at=seq(0,10,2.5),
##'      atrisk.title="",
##'      background=TRUE,
##'      background.fg="white",
##'      background.horizontal=seq(0,1,.25/2),
##'      background.vertical=seq(0,10,2.5),
##'      background.bg=c("gray88"))
##' 
##' # change type of confidence limits
##' plot(kmfit,
##'      xlim=c(0,10),
##'      confint.citype="dots",
##'      col=4,
##'      background=TRUE,
##'      background.bg=c("white","gray88"),
##'      background.fg="gray77",
##'      background.horizontal=seq(0,1,.25/2),
##'      background.vertical=seq(0,10,2))
##' 
##' 
##' ### Kaplan-Meier in discrete strata
##' kmfitX <- prodlim(Hist(time, status) ~ X1, data = dat)
##' plot(kmfitX,atrisk.show.censored=1L)
##' # move legend
##' plot(kmfitX,legend.x="bottomleft",atRisk.cex=1.3,
##'      atrisk.title="No. subjects")
##' 
##' ## Control the order of strata
##' ## since version 1.5.1 prodlim does  obey the order of
##' ## factor levels
##' dat$group <- factor(cut(dat$X2,c(-Inf,0,0.5,Inf)),
##'                     labels=c("High","Intermediate","Low"))
##' kmfitG <- prodlim(Hist(time, status) ~ group, data = dat)
##' plot(kmfitG)
##' 
##' ## relevel 
##' dat$group2 <- factor(cut(dat$X2,c(-Inf,0,0.5,Inf)),
##'                      levels=c("(0.5, Inf]","(0,0.5]","(-Inf,0]"),
##'                      labels=c("Low","Intermediate","High"))
##' kmfitG2 <- prodlim(Hist(time, status) ~ group2, data = dat)
##' plot(kmfitG2)
##' 
##' # add log-rank test to legend
##' plot(kmfitX,
##'      atRisk.cex=1.3,
##'      logrank=TRUE,
##'      legend.x="topright",
##'      atrisk.title="at-risk")
##' 
##' # change atrisk labels
##' plot(kmfitX,
##'      legend.x="bottomleft",
##'      atrisk.title="Patients",
##'      atrisk.cex=0.9,
##'      atrisk.labels=c("X1=0","X1=1"))
##' 
##' # multiple categorical factors
##' 
##' kmfitXG <- prodlim(Hist(time,status)~X1+group2,data=dat)
##' plot(kmfitXG,select=1:2)
##' 
##' ### Kaplan-Meier in continuous strata
##' kmfitX2 <- prodlim(Hist(time, status) ~ X2, data = dat)
##' plot(kmfitX2,xlim=c(0,10))
##' 
##' # specify values of X2 for which to show the curves 
##' plot(kmfitX2,xlim=c(0,10),newdata=data.frame(X2=c(-1.8,0,1.2)))
##' 
##' ### Cluster-correlated data
##' library(survival)
##' cdat <- cbind(SimSurv(20),patnr=sample(1:5,size=20,replace=TRUE))
##' kmfitC <- prodlim(Hist(time, status) ~ cluster(patnr), data = cdat)
##' plot(kmfitC)
##' plot(kmfitC,atrisk.labels=c("Units","Patients"))
##' 
##' kmfitC2 <- prodlim(Hist(time, status) ~ X1+cluster(patnr), data = cdat)
##' plot(kmfitC2)
##' plot(kmfitC2,atrisk.labels=c("Teeth","Patients","Teeth","Patients"),
##'      atrisk.col=c(1,1,2,2))
##' 
##' 
##' ### Cluster-correlated data with strata
##' n = 50
##' foo = runif(n)
##' bar = rexp(n)
##' baz = rexp(n,1/2)
##' d = stack(data.frame(foo,bar,baz))
##' d$cl = sample(10, 3*n, replace=TRUE)
##' fit = prodlim(Surv(values) ~ ind + cluster(cl), data=d)
##' plot(fit)
##' 
##' 
##' ## simulate right censored data from a competing risk model 
##' datCR <- SimCompRisk(100)
##' with(datCR,plot(Hist(time,event)))
##' 
##' ### marginal Aalen-Johansen estimator
##' ajfit <- prodlim(Hist(time, event) ~ 1, data = datCR)
##' plot(ajfit) # same as plot(ajfit,cause=1)
##' plot(ajfit,atrisk.show.censored=1L)
##' 
##' # cause 2
##' plot(ajfit,cause=2)
##' 
##' # both in one
##' plot(ajfit,cause=1)
##' plot(ajfit,cause=2,add=TRUE,col=2)
##' 
##' ### stacked plot
##' 
##' plot(ajfit,cause="stacked",select=2)
##' 
##' ### stratified Aalen-Johansen estimator
##' ajfitX1 <- prodlim(Hist(time, event) ~ X1, data = datCR)
##' plot(ajfitX1)
##' 
##' ## add total number at-risk to a stratified curve
##' ttt = 1:10
##' plot(ajfitX1,atrisk.at=ttt,col=2:3)
##' plot(ajfit,add=TRUE,col=1)
##' atRisk(ajfit,newdata=datCR,col=1,times=ttt,line=3,labels="Total")
##' 
##'
##' ## stratified Aalen-Johansen estimator in nearest neighborhoods
##' ## of a continuous variable
##' ajfitX <- prodlim(Hist(time, event) ~ X1+X2, data = datCR)
##' plot(ajfitX,newdata=data.frame(X1=c(1,1,0),X2=c(4,10,10)))
##' plot(ajfitX,newdata=data.frame(X1=c(1,1,0),X2=c(4,10,10)),cause=2)
##' 
##' ## stacked plot
##' 
##' plot(ajfitX,
##'      newdata=data.frame(X1=0,X2=0.1),
##'      cause="stacked",
##'      legend.title="X1=0,X2=0.1",
##'      legend.legend=paste("cause:",getStates(ajfitX$model.response)),
##'      plot.main="Subject specific stacked plot")
##'  
#' @export plot.prodlim
#' @export 
plot.prodlim <- function(x,
                         type,
                         cause,
                         select,
                         newdata,
                         add = FALSE,
                         col,
                         lty,
                         lwd,
                         ylim,
                         xlim,
                         ylab,
                         xlab="Time",
                         num.digits=2,
                         timeconverter,
                         legend=TRUE,
                         short.labels=TRUE,
                         logrank=FALSE,
                         marktime=FALSE,
                         confint=TRUE,
                         automar,
                         atrisk=ifelse(add,FALSE,TRUE),
                         timeOrigin=0,
                         axes=TRUE,
                         background=TRUE,
                         percent=TRUE,
                         minAtrisk=0,
                         limit=10,
                         ...){
    # }}}
    # {{{ data.table NULL's
    risk <- surv <- lower.risk <- lower <- upper <- cuminc <- surv <- time <- NULL
    # }}}
    # {{{  backward compatibility
    ##   args=match.call(expand=TRUE)
    ##   args[[1]]=list
    allArgs <- match.call()
    if (missing(type)){
        type=allArgs[[match("what",names(allArgs))]]
    }
    # }}}
    # {{{  extracting a list of lines to draw

    cens.type <- x$cens.type    # uncensored, right or interval censored
    if (cens.type=="intervalCensored") {
        confint <- FALSE
        atrisk <- FALSE
    }
    model <- x$model                 # survival, competing risks or multi-state
    clusterp <- !is.null(x$clustervar)
    if (clusterp ==TRUE && logrank==TRUE){
        warning("Argument 'logrank' internally set to FALSE due to cluster variable.")
        logrank=FALSE
    }
    if (missing(type)||is.null(type)){
        type <- x$type
    }
    else
        type <- match.arg(type,c("surv","risk","cuminc","hazard"))
    if (type=="cuminc") type = "risk"
    if (model=="competing.risks" && type=="surv")
        stop("To plot the event-free survival curve, please fit a suitable model: prodlim(Hist(time,status!=0)~....")
  
    if (cens.type=="intervalCensored")
        plot.times <- sort(unique(x$time[2,]))
    else{
        plot.times <- sort(unique(x$time))
        if (plot.times[1]>timeOrigin) plot.times <- c(timeOrigin,plot.times)
        else plot.times <- c(timeOrigin,plot.times[plot.times>timeOrigin])
    }
    if (length(x$clustervar)>0)
        nRisk <- x$n.risk[,1]
    else
        nRisk <- x$n.risk
    if (minAtrisk>0 && any(nRisk<=minAtrisk)){
        if (all(nRisk<=minAtrisk)){
            return(plot(0,0,type="n",xlim=c(min(plot.times), max(plot.times)),ylim=c(0, 1),axes=FALSE))
        }
        criticalTime <- min(x$time[nRisk<=minAtrisk])
        plot.times <- plot.times[plot.times<criticalTime]
        ## if (sum(nEvent[nRisk>minAtrisk])<=1)
    }
    if (missing(newdata)) {
        newdata <- x$X
        if (NROW(newdata)>limit)
            newdata <- newdata[c(1,round(median(1:NROW(newdata))),NROW(newdata)),,drop=FALSE]          
    }
    ## restrict plot.times to xlim
    if (!missing(xlim)){
        if (xlim[1]>plot.times[1]) plot.times <- plot.times[plot.times>=xlim[1]]
        if (xlim[2]<plot.times[length(plot.times)]) plot.times <- unique(c(plot.times[plot.times<=xlim[2]],xlim[2]))
    }
    ## if (missing(newdata) && NROW(newdata)>limit)
    ## newdata <- newdata[c(1,round(median(1:NROW(newdata))),NROW(newdata)),,drop=FALSE]
    if (missing(cause)){
        cause <- attr(x$model.response,which="states")[1]
        stacked <- FALSE
    } else{
        stacked <- cause[1]=="stacked"
        if (stacked) ## all causes
            cause <- attributes(x$model.response)$states
        else
            cause <- checkCauses(cause,x)
    }
    if (stacked){
        confint <- FALSE
        if (model!="competing.risks") stop("Stacked plot works only for competing risks models.")
        ## if (NROW(newdata)>1) stop("Stacked plot works only for one covariate stratum.")
    }else{
        if (length(cause)==0){
            cause <- attributes(x$model.response)$states[[1]]
        }
        ## if (length(cause)>1){
        ## warning("Currently only the cumulative incidence of a single cause can be plotted in one go. Use argument add=TRUE to add the lines of the other causes. For now I use the first cause")
        ## cause <- cause[1]
        ## }
    }
    startValue=ifelse(type=="surv",1,0)
    if (type=="hazard" && model!="survival")
        stats=list(c("cause.hazard",0))
    else
        stats=list(c(type,startValue))
    if (model=="survival" && type=="risk") {
        startValue=1
        stats=list(c("surv",startValue))
    }
    if (confint==TRUE)
        stats=c(stats,list(c("lower",startValue),c("upper",startValue)))
    if (x$cens.type=="intervalCensored"){
        stop("FIXME: There is no plot method implemented for intervalCensored data.")
    }
    if  (model=="competing.risks"){
        sumX <- lifeTab(x,
                        times=plot.times,
                        cause=cause,
                        newdata=newdata,
                        stats=stats,
                        percent=FALSE,format="dt")
    } else{
        sumX <- lifeTab(x,
                        times=plot.times,
                        newdata=newdata,
                        stats=stats,
                        percent=FALSE,format="dt")
    }
    if (model=="survival" && type=="risk"){
        sumX[,risk:=1-surv]
        if (confint[[1]]==TRUE){
            sumX[,lower.risk:=1-upper]
            sumX[,upper:=1-lower]
            sumX[,lower:=NULL]
            setnames(sumX,"lower.risk","lower")
        }
        estimate <- "risk"
    }else{
        if (model=="survival")
            estimate <- "surv"
        else
            estimate <- "risk"
    }
    xvars  <- data.table::key(sumX)
    if (length(xvars)>0){
        xdata <- sumX[,xvars,with=FALSE]
        # degenerated variables are ignored
        xdegen <- sapply(xdata,function(x)length(unique(x))==1)
        xvars <- xvars[!xdegen]
    }
    if (length(xvars)>0){
        xdata <- xdata[,xvars,with=FALSE]
        if (short.labels[[1]]==TRUE){
            xstrata <- apply(do.call("cbind",lapply(xvars,function(n){
                if(is.numeric(xdata[[n]]))
                    x <- format(xdata[[n]],digits=num.digits)
                else 
                    x <- as.character(xdata[[n]])
                # justify to column width
                format(c(n,x),justify="right")
            })),1,paste,collapse=", ")
            xtitle <- xstrata[[1]]
            xstrata <- xstrata[-1]
        }else{
            xstrata <- apply(do.call("cbind",lapply(xvars,function(n){
                if(is.numeric(xdata[[n]]))
                    x <- paste(n,format(xdata[[n]],digits=2),sep="=")
                else 
                    x <- paste(n,xdata[[n]],sep="=")
                # justify to column width
                format(x,justify="right")
            })),1,paste,collapse=", ")
            xtitle <- ""
        }
        Y <- lapply(unique(xstrata),function(u){sumX[[estimate]][xstrata == u]})
        names(Y) <- unique(xstrata)
        ## Y <- split(sumX[[estimate]],xstrata)
        nlost <- lapply(unique(xstrata),function(u){sumX[["n.lost"]][xstrata == u]})
        names(nlost) <- unique(xstrata)
        ## nlost <- split(sumX[["n.lost"]],xstrata)
        if (confint[[1]]==TRUE){
            ci <- lapply(unique(xstrata),function(u){sumX[,data.table::data.table(time,lower,upper)][xstrata == u]})
            names(ci) <- unique(xstrata)
            ## ci <- split(sumX[,data.table::data.table(time,lower,upper)],xstrata)
        } else{
            ci <- NULL
        }
        names(Y) <- unique(xstrata)
    }else{
        xtitle <- ""
        Y <- list(sumX[[estimate]])
        nlost <- list(sumX[["n.lost"]])
        if (confint[[1]]==TRUE){
            ci <- list(data.table::data.table(time=sumX$time,lower=sumX$lower,upper=sumX$upper))
        }
        else{
            ci <- NULL
        }
    }
    # argument select could be removed:
    if (!missing(select)){Y <- Y[select]}
    nlines <- length(Y)
    # }}}
    # {{{  getting default arguments for plot, atrisk, axes, legend, confint, marktime
    if (missing(xlim)) xlim <- c(min(plot.times), max(plot.times))
    if (!missing(timeconverter)){
        units <- strsplit(tolower(as.character(substitute(timeconverter))),"[ \t]?(2|to)[ \t]?")[[1]]
        conversion <- switch(paste0(units,collapse="-"),
                             "days-years"=1/365.25,
                             "months-years"=1/12,
                             "days-months"=1/30.4368499,
                             "years-days"=365.25,
                             "years-months"=12,
                             "months-days"=30.4368499)
        one <- switch(units[[1]],"years"=1,"months"=12,"days"=365.25)
        xlab <- paste0("Time (", units[[2]],")")
        axis1.DefaultArgs <- list(at=seq(xlim[1],xlim[2],one),
                                  labels=seq(xlim[1],xlim[2],one)*conversion)
        atriskDefaultPosition <- seq(xlim[1],xlim[2],one)
    } else {
        if (missing(xlab)) xlab <- "Time"
        axis1.DefaultArgs <- list()
        atriskDefaultPosition <- seq(min(plot.times),
                                     max(plot.times),
                                     (max(plot.times)-min(plot.times))/10)
    }
    if (missing(ylab)) ylab <- switch(type,
                                      "surv"=ifelse(x$reverse==TRUE,"Censoring probability","Survival probability"),
                                      "risk"="Absolute risk",
                                      "hazard"="Cumulative hazard")
    if (missing(ylim)) ylim <- c(0, 1)
    if (missing(lwd)) lwd <- rep(3,nlines)
    if (missing(col)) {
        cbbPalette <- c("#000000", "#E69F00", "#56B4E9", "#009E73", "#D55E00", "#0072B2", "#CC79A7", "#F0E442")
        if (nlines>length(cbbPalette))
            col <- rainbow(nlines)
        else
            col <- cbbPalette[1:nlines]
    }
    if (missing(lty)) lty <- rep(1, nlines)
    if (length(lwd) < nlines) lwd <- rep(lwd, nlines)
    if (length(lty) < nlines) lty <- rep(lty, nlines)
    if (length(col) < nlines) col <- rep(col, nlines)
  
    background.DefaultArgs <- list(xlim=xlim,
                                   ylim=ylim,
                                   horizontal=seq(ylim[1],ylim[2],diff(ylim)/4),
                                   vertical=NULL,
                                   bg="white",
                                   fg="gray88")
    axis2.DefaultArgs <- list(at=seq(ylim[1],ylim[2],ylim[2]/4),side=2)
    lines.DefaultArgs <- list(type="s")
    plot.DefaultArgs <- list(x=0,y=0,type = "n",ylim = ylim,xlim = xlim,xlab = xlab,ylab = ylab)
    marktime.DefaultArgs <- list(x=Y,nlost=nlost,times=plot.times,pch="I",col=col)
    atrisk.DefaultArgs <- list(x=x,
                               newdata=newdata,
                               interspace=1,
                               dist=1.5,
                               col=col,
                               labelcol=1,
                               titlecol=1,
                               title="",
                               labels="",
                               times=atriskDefaultPosition,show.censored=FALSE,unit='npc')
    if (!missing(select) && (!(model=="competing.risks" && stacked))){
        atrisk.DefaultArgs$newdata <- atrisk.DefaultArgs$newdata[select,,drop=FALSE]
    }
    adapted.legend.cex <- as.numeric(as.character(cut(nlines,breaks=c(-Inf,2:17,Inf),labels=seq(1.5,by=-0.05,length.out=17))))
    legend.DefaultArgs <- list(legend=names(Y),
                               title=xtitle,
                               lwd=lwd,
                               col=col,
                               lty=lty,
                               cex=adapted.legend.cex,
                               bty="n",
                               y.intersp=1.3,
                               x=ifelse(type=="surv","topright","topleft"))
    if (stacked) {
        legend.DefaultArgs$title <- "Competing risks"
        legend.DefaultArgs$x <- "topleft"
    }
    
    confint.DefaultArgs <- list(ci=ci,
                                citype="shadow",
                                density=55,
                                col=col[1:nlines],
                                lwd=rep(2,nlines),
                                lty=rep(3,nlines))

    # }}}
    # {{{  smart argument control
    smartA <- SmartControl(call=  list(...),
                           keys=c("plot","lines","atrisk","legend","confint","background","marktime","axis1","axis2"),
                           ignore=c("x","type","cause","newdata","add","col","lty","lwd","ylim","xlim","xlab","ylab","legend","marktime","confint","automar","atrisk","timeOrigin","percent","axes","atrisk.args","confint.args","legend.args"),
                           defaults=list("plot"=plot.DefaultArgs,"atrisk"=atrisk.DefaultArgs,"lines"=lines.DefaultArgs,"legend"=legend.DefaultArgs,"confint"=confint.DefaultArgs,"marktime"=marktime.DefaultArgs,"background"=background.DefaultArgs,"axis1"=axis1.DefaultArgs,"axis2"=axis2.DefaultArgs),
                           forced=list("plot"=list(axes=FALSE),"axis1"=list(side=1)),
                           ignore.case=TRUE,
                           replaceDefaults=FALSE,
                           verbose=TRUE)

    # }}}
    # {{{  setting margin parameters
    if (atrisk==TRUE){
        oldmar <- par()$mar
        on.exit(par(mar=oldmar)) ## reset
        if (missing(automar) || automar==TRUE){
            ##        bottomMargin =  margin line (in 'mex' units) for xlab
            ##                        + distance of xlab from xaxis
            ##                        + distance of atrisk numbers from xlab
            ##                        + number of atrisk lines
            ##                        + one extra line below the bottom number atrisk line
            ##      leftSideMargin =  margin line + atrisk.lab
            bottommargin.height <- smartA$atrisk$dist+ifelse(clusterp,2,1)*nlines * smartA$atrisk$interspace/max(1,length(cause))
            bottomMargin.start <- par()$mgp[1]
            maxlabellen <- max(strwidth(c(smartA$atrisk$labels,smartA$atrisk$title),
                                        cex=smartA$atrisk$cex,
                                        units="inches"))
            maxlabellen <- pmax(maxlabellen * (par("mar")[2] / par("mai")[2]),par("mar")[2])
            leftMargin <- maxlabellen+2-par("mar")[2]
            newmar <- par()$mar + c(bottomMargin.start+bottommargin.height,leftMargin,0,0)
            par(mar=newmar)
        }
    }
    # }}}
    # {{{  plot and backGround
    if (!add) {
        do.call("plot",smartA$plot)
        if (background==TRUE){
            do.call("backGround",smartA$background)
        }
    }
    # }}}
    # {{{  axes
    if (!add) {
        if (axes){
            do.call("axis",smartA$axis1)
            if (percent & is.null(smartA$axis2$labels))
                smartA$axis2$labels <- paste(100*smartA$axis2$at,"%")
            do.call("axis",smartA$axis2)
        }
    }
    # }}}
    # {{{  pointwise confidence intervals
    if (confint==TRUE) {
        ## if (verbose==TRUE){print(smartA$confint)}
        do.call("confInt",smartA$confint)
    }
    # }}}
    # {{{  adding the lines 
    lines.type <- smartA$lines$type
    if (stacked==TRUE){
        if (length(Y)>1){
            nY <- names(Y)
            Y <- apply(do.call("rbind",Y),2,cumsum)
            Y <- lapply(1:nlines,function(i)Y[i,])
            names(Y) <- nY
        }
        ## names(Y) <- attr(x$model.response,"states")
        nix <- lapply(1:nlines, function(s) {
            yyy <- Y[[s]]
            ppp <- plot.times
            pos.na <- is.na(yyy)
            ppp <- ppp[!pos.na]
            yyy <- yyy[!pos.na]
            lines(x = ppp,y = yyy,type = lines.type,col = col[s],lty = lty[s],lwd = lwd[s])
            cc <- dimColor(col[s],density=55)
            ttt <- ppp
            nt <- length(ttt)
            ttt <- c(ttt,ttt)
            uuu <- c(0,yyy[-nt],yyy)
            if (s==1)
                lll <- rep(0,nt*2)
            else
                lll <- c(0,Y[[s-1]][!pos.na][-nt],Y[[s-1]][!pos.na])
            neworder <- order(ttt)
            uuu <- uuu[neworder]
            lll <- lll[neworder]
            ttt <- sort(ttt)
            polygon(x=c(ttt,rev(ttt)),y=c(lll,rev(uuu)),col=cc,border=NA)
        })
    }else{
        nix <- lapply(1:nlines, function(s) {
            lines(x = plot.times,
                  y = Y[[s]],
                  type = lines.type,
                  col = col[s],
                  lty = lty[s],
                  lwd = lwd[s])
        })
    }
    # }}}
    # {{{  marks at the censored times
    if (marktime==TRUE){
        if (model %in% c("survival","competing.risks")){
            do.call("markTime",smartA$marktime)
        }
        else{
            message("Marking the curves at censored times is not yet available for multi-state models.")
        }
    }
    # }}}
    # {{{  adding the number of subjects at risk and uncensored
    if (atrisk==TRUE && !add){
        if (hit <- match("at",names(smartA$atrisk),nomatch=FALSE)){
            if (match("atrisk.times",names(list(...)),nomatch=FALSE)){
                warning("Atrisk argument clash: remove either 'atrisk.at' or 'atrisk.times'.")
            }
            else{
                names(smartA$atrisk)[hit] <- "times"
                smartA$atrisk <- smartA$atrisk[!duplicated(names(smartA$atrisk))]
            }
        }
        do.call("atRisk",smartA$atrisk)
    }
    # }}}
    # {{{  legend
    if(legend==TRUE && !add && !is.null(names(Y))){
        save.xpd <- par()$xpd
        if (logrank && model=="survival" && length(smartA$legend$legend)>1){
            ## formula.names <- try(all.names(formula),silent=TRUE)
            lrform <- x$call$formula
            if (lrform[[2]][[1]]==as.name("Hist"))
                lrform[[2]][[1]] <- as.name("Surv")
            ## require(survival)
            lrtest <- survival::survdiff(eval(lrform),data=eval(x$call$data),subset=eval(x$call$subset))
            if (length(lrtest$n) == 1) {
                p <- 1 - pchisq(lrtest$chisq, 1)
            } else{
                if (is.matrix(lrtest$obs)) {
                    etmp <- apply(lrtest$exp, 1, sum)
                }
                else {
                    etmp <- lrtest$exp
                }
                df <- (sum(1 * (etmp > 0))) - 1
                p <- 1 - pchisq(lrtest$chisq, df)
            }
            pform <- format.pval(p,digits=logrank,eps=0.0001)
            pbelow <- length(grep("<",pform))>0
            pform <- if (pbelow) paste0("p ",pform) else paste0("p = ",pform)
            if (length(smartA$legend$title)){
                smartA$legend$title <- paste(smartA$legend$title," Log-rank: ",pform)
            } else{
                smartA$legend$title <- paste("Log-rank: ",pform)
            }
        }
        par(xpd=TRUE)
        do.call("legend",smartA$legend)
        par(xpd=save.xpd)
    }
    # }}}
    invisible(x)
}

Try the prodlim package in your browser

Any scripts or data that you put into this service are public.

prodlim documentation built on June 24, 2024, 5:08 p.m.