R/factor.minres.R

"factor.minres" <- 
function(r,nfactors=1,residuals=FALSE,rotate="varimax",n.obs = NA,scores=FALSE,SMC=TRUE,missing=FALSE,impute="median", min.err = .001,digits=2,max.iter=50,symmetric=TRUE,warnings=TRUE,fm="minres") {
 cl <- match.call()
  .Deprecated("fa",msg="factor.minres is deprecated.  Please use the fa function.")
 ##first some functions that are internal to factor.minres
  #this does the ULS fitting  
  "fit.residuals.ols" <- function(Psi,S,nf) {
              diag(S) <- 1- Psi
              eigens <- eigen(S)
              eigens$values[eigens$values  < .Machine$double.eps] <- 100 * .Machine$double.eps
       
         if(nf >1 ) {loadings <- eigens$vectors[,1:nf] %*% diag(sqrt(eigens$values[1:nf])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) }
         model <- loadings %*% t(loadings)
         residual <- (S - model)^2
         diag(residual) <- 0
         error <- sum(residual)
         }
   "fit.residuals.min.res" <- function(Psi,S,nf) {
              diag(S) <-1- Psi
           
              eigens <- eigen(S)
        #loadings <- eigen.loadings(eigens)[,1:nf]
         if(nf >1 ) {loadings <- eigens$vectors[,1:nf] %*% diag(sqrt(eigens$values[1:nf])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) }
         model <- loadings %*% t(loadings)
         residual <- (S - model)
         diag(residual) <- 0
        
         error <- det(residual)
         }
 #this code is taken (with minor modification to make ULS) from factanal        
 #it does the iterative calls to fit.residuals   
     "min.res" <- function(S,nf) {
          S.smc <- smc(S)
          if(sum(S.smc) == nf) {start <- rep(.5,nf)}  else {start <- 1- S.smc}       
          res <- optim(start, fit.residuals.ols, method = "L-BFGS-B", lower = .005, 
        upper = 1, control = c(list(fnscale = 1, parscale = rep(0.01, 
            length(start)))), nf= nf, S=S )
    Lambda <- FAout(res$par, S, nf)
    result <- list(loadings=Lambda,res=res)
    }
          
 #these  were also taken from factanal        
     FAout <- function(Psi, S, q) {
        sc <- diag(1/sqrt(Psi))
        Sstar <- sc %*% S %*% sc
        E <- eigen(Sstar, symmetric = TRUE)
        L <- E$vectors[, 1L:q, drop = FALSE]
        load <- L %*% diag(sqrt(pmax(E$values[1L:q] - 1, 0)), 
            q)
        diag(sqrt(Psi)) %*% load
    }
    FAfn <- function(Psi, S, q) {
        sc <- diag(1/sqrt(Psi))
        Sstar <- sc %*% S %*% sc
        E <- eigen(Sstar, symmetric = TRUE, only.values = TRUE)
        e <- E$values[-(1L:q)]
        e <- sum(log(e) - e) - q + nrow(S)
        -e
    }
 
 ## now start the main function
 
 if((fm !="pa") & (fm != "minres")) {message("factor method not specified correctly, minimum residual used  used")
   fm <- "minres" }
 
    n <- dim(r)[2]
    if (n!=dim(r)[1]) {  n.obs <- dim(r)[1]
               if(scores) {x.matrix <- r
             if(missing) {     #impute values 
        miss <- which(is.na(x.matrix),arr.ind=TRUE)
        if(impute=="mean") {
       item.means <- colMeans(x.matrix,na.rm=TRUE)   #replace missing values with means
       x.matrix[miss]<- item.means[miss[,2]]} else {
       item.med   <- apply(x.matrix,2,median,na.rm=TRUE) #replace missing with medians
        x.matrix[miss]<- item.med[miss[,2]]}
        }}
    		r <- cor(r,use="pairwise") # if given a rectangular matrix, then find the correlations first
           } else {
     				if(!is.matrix(r)) {  r <- as.matrix(r)}
     				 sds <- sqrt(diag(r))    #convert covariance matrices to correlation matrices
                     r <- r/(sds %o% sds)  } #added June 9, 2008
    if (!residuals) { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),fit=0)} else { result <- list(values=c(rep(0,n)),rotation=rotate,n.obs=n.obs,communality=c(rep(0,n)),loadings=matrix(rep(0,n*n),ncol=n),residual=matrix(rep(0,n*n),ncol=n),fit=0)}

   
   
    r.mat <- r
    Phi <- NULL 
    colnames(r.mat) <- rownames(r.mat) <- colnames(r)
     if(SMC) { 
      if(nfactors < n/2)   {diag(r.mat) <- smc(r) }  else {if (warnings) message("too many factors requested for this number of variables to use SMC, 1s used instead")}  }
    orig <- diag(r)
   
   
    comm <- sum(diag(r.mat))
    err <- comm
     i <- 1
    comm.list <- list()
    if(fm=="pa") {
    while(err > min.err)    #iteratively replace the diagonal with our revised communality estimate
      {
        eigens <- eigen(r.mat,symmetric=symmetric)
        #loadings <- eigen.loadings(eigens)[,1:nfactors]
         if(nfactors >1 ) {loadings <- eigens$vectors[,1:nfactors] %*% diag(sqrt(eigens$values[1:nfactors])) } else {loadings <- eigens$vectors[,1] * sqrt(eigens$values[1] ) }
         model <- loadings %*% t(loadings)
         
         new <- diag(model)
         
         comm1 <- sum(new)
         diag(r.mat) <- new
         err <- abs(comm-comm1)
         if(is.na(err)) {warning("imaginary eigen value condition encountered in fa,\n Try again with SMC=FALSE \n exiting fa")
          break}
         comm <- comm1
         comm.list[[i]] <- comm1
         i <- i + 1
         if(i > max.iter) {if(warnings)  {message("maximum iteration exceeded")}
                err <-0 }
       }
       
       }
       
       if(fm == "minres") { #added April 12, 2009 to do ULS fits
       uls <- min.res(r,nfactors)
       eigens <- eigen(r)  #used for the summary stats
       result$par <- uls$res
       loadings <- uls$loadings
                            }
       
       # a weird condition that happens with the Eysenck data
       #making the matrix symmetric solves this problem
       if(!is.double(loadings)) {warning('the matrix has produced imaginary results -- proceed with caution')
       loadings <- matrix(as.double(loadings),ncol=nfactors) } 
       #make each vector signed so that the maximum loading is positive  - probably should do after rotation
       #Alternatively, flip to make the colSums of loading positive
   if (FALSE) {
   if (nfactors >1) {
    		maxabs <- apply(apply(loadings,2,abs),2,which.max)
   			sign.max <- vector(mode="numeric",length=nfactors)
    		for (i in 1: nfactors) {sign.max[i] <- sign(loadings[maxabs[i],i])}
    		loadings <- loadings %*% diag(sign.max)
   		
    	} else {
    		mini <- min(loadings)
   			maxi <- max(loadings)
    		if (abs(mini) > maxi) {loadings <- -loadings }
    		loadings <- as.matrix(loadings)
    		if(fm == "minres") {colnames(loadings) <- "MR1"} else {colnames(loadings) <- "PA1"}
    	} #sign of largest loading is positive
    }
    
    #added January 5, 2009 to flip based upon colSums of loadings
    if (nfactors >1) {sign.tot <- vector(mode="numeric",length=nfactors)
                 sign.tot <- sign(colSums(loadings))
                 loadings <- loadings %*% diag(sign.tot)
     } else { if (sum(loadings) <0) {loadings <- -as.matrix(loadings)} else {loadings <- as.matrix(loadings)}
             colnames(loadings) <- "MR1" }
     
 
    #end addition
    if(fm == "minres") {colnames(loadings) <- paste("MR",1:nfactors,sep='')	} else {colnames(loadings) <- paste("PA",1:nfactors,sep='')}
    rownames(loadings) <- rownames(r)
    loadings[loadings==0.0] <- 10^-15    #added to stop a problem with varimax if loadings are exactly 0
    
    model <- loadings %*% t(loadings)  
   
    f.loadings <- loadings #used to pass them to factor.stats 
    if(rotate != "none") {if (nfactors > 1) {
   
    
   	if (rotate=="varimax" | rotate=="quartimax") { 
   			rotated <- do.call(rotate,list(loadings))
   			loadings <- rotated$loadings
   			 Phi <- NULL} else { 
     			if ((rotate=="promax")|(rotate=="Promax")) {pro <- Promax(loadings)
     			                loadings <- pro$loadings
     			                Phi <- pro$Phi} else {
     			if (rotate == "cluster") {loadings <- varimax(loadings)$loadings           			
								pro <- target.rot(loadings)
     			              	loadings <- pro$loadings
     			                Phi <- pro$Phi} else {
     			                     
     			if (rotate =="oblimin"| rotate=="quartimin" | rotate== "simplimax") {
     				if (!requireNamespace('GPArotation')) {warning("I am sorry, to do these rotations requires the GPArotation package to be installed")
     				Phi <- NULL} else { ob  <- do.call(rotate,list(loadings) )
     				loadings <- ob$loadings
     				 Phi <- ob$Phi}
     		                             }
     	               }}}
     	  
     }}
        #just in case the rotation changes the order of the factors, sort them
        #added October 30, 2008
       
   if(nfactors >1) {
    ev.rotated <- diag(t(loadings) %*% loadings)
    ev.order <- order(ev.rotated,decreasing=TRUE)
    loadings <- loadings[,ev.order]}
    rownames(loadings) <- colnames(r)
    if(!is.null(Phi)) {Phi <- Phi[ev.order,ev.order] } #January 20, 2009 but, then, we also need to change the order of the rotation matrix!
    class(loadings) <- "loadings"
    if(nfactors < 1) nfactors <- n
   
   result <- factor.stats(r,loadings,Phi,n.obs)   #do stats as a subroutine common to several functions

    result$communality <- round(diag(model),digits)
    result$uniquenesses <- round(diag(r-model),digits)
    result$values <- round(eigens$values,digits)
    result$loadings <- loadings

    if(!is.null(Phi)) {result$Phi <- Phi}
    if(fm == "pa") result$communality.iterations <- round(unlist(comm.list),digits)
    
    if(scores) {result$scores <- factor.scores(x.matrix,loadings) }
    result$factors <- nfactors 
    result$fn <- "factor.minres"
    result$fm <- fm
    result$Call <- cl
    class(result) <- c("psych", "fa")
    return(result) }
    
    #modified October 30, 2008 to sort the rotated loadings matrix by the eigen values.
 
 

Try the psych package in your browser

Any scripts or data that you put into this service are public.

psych documentation built on June 27, 2024, 5:07 p.m.