Nothing
#' Apply a function to each element of a vector
#'
#' @description
#' The map functions transform their input by applying a function to
#' each element of a list or atomic vector and returning an object of
#' the same length as the input.
#'
#' * `map()` always returns a list. See the [modify()] family for
#' versions that return an object of the same type as the input.
#'
#' * `map_lgl()`, `map_int()`, `map_dbl()` and `map_chr()` return an
#' atomic vector of the indicated type (or die trying). For these functions,
#' `.f` must return a length-1 vector of the appropriate type.
#'
#' * `map_vec()` simplifies to the common type of the output. It works with
#' most types of simple vectors like Date, POSIXct, factors, etc.
#'
#' * `walk()` calls `.f` for its side-effect and returns
#' the input `.x`.
#'
#' @param .x A list or atomic vector.
#' @param .f A function, specified in one of the following ways:
#'
#' * A named function, e.g. `mean`.
#' * An anonymous function, e.g. `\(x) x + 1` or `function(x) x + 1`.
#' * A formula, e.g. `~ .x + 1`. You must use `.x` to refer to the first
#' argument. No longer recommended.
#' * A string, integer, or list, e.g. `"idx"`, `1`, or `list("idx", 1)` which
#' are shorthand for `\(x) pluck(x, "idx")`, `\(x) pluck(x, 1)`, and
#' `\(x) pluck(x, "idx", 1)` respectively. Optionally supply `.default` to
#' set a default value if the indexed element is `NULL` or does not exist.
#'
#' `r lifecycle::badge("experimental")`
#'
#' Wrap a function with [in_parallel()] to declare that it should be performed
#' in parallel. See [in_parallel()] for more details.
#' Use of `...` is not permitted in this context.
#'
#' @param ... Additional arguments passed on to the mapped function.
#'
#' We now generally recommend against using `...` to pass additional
#' (constant) arguments to `.f`. Instead use a shorthand anonymous function:
#'
#' ```R
#' # Instead of
#' x |> map(f, 1, 2, collapse = ",")
#' # do:
#' x |> map(\(x) f(x, 1, 2, collapse = ","))
#' ```
#'
#' This makes it easier to understand which arguments belong to which
#' function and will tend to yield better error messages.
#'
#' @param .progress Whether to show a progress bar. Use `TRUE` to turn on
#' a basic progress bar, use a string to give it a name, or see
#' [progress_bars] for more details.
#' @returns
#' The output length is determined by the length of the input.
#' The output names are determined by the input names.
#' The output type is determined by the suffix:
#'
#' * No suffix: a list; `.f()` can return anything.
#'
#' * `_lgl()`, `_int()`, `_dbl()`, `_chr()` return a logical, integer, double,
#' or character vector respectively; `.f()` must return a compatible atomic
#' vector of length 1.
#'
#' * `_vec()` return an atomic or S3 vector, the same type that `.f` returns.
#' `.f` can return pretty much any type of vector, as long as its length 1.
#'
#' * `walk()` returns the input `.x` (invisibly). This makes it easy to
#' use in a pipe. The return value of `.f()` is ignored.
#'
#' Any errors thrown by `.f` will be wrapped in an error with class
#' [purrr_error_indexed].
#' @export
#' @family map variants
#' @seealso [map_if()] for applying a function to only those elements
#' of `.x` that meet a specified condition.
#' @examples
#' # Compute normal distributions from an atomic vector
#' 1:10 |>
#' map(rnorm, n = 10)
#'
#' # You can also use an anonymous function
#' 1:10 |>
#' map(\(x) rnorm(10, x))
#'
#' # Simplify output to a vector instead of a list by computing the mean of the distributions
#' 1:10 |>
#' map(rnorm, n = 10) |> # output a list
#' map_dbl(mean) # output an atomic vector
#'
#' # Using set_names() with character vectors is handy to keep track
#' # of the original inputs:
#' set_names(c("foo", "bar")) |> map_chr(paste0, ":suffix")
#'
#' # Working with lists
#' favorite_desserts <- list(Sophia = "banana bread", Eliott = "pancakes", Karina = "chocolate cake")
#' favorite_desserts |> map_chr(\(food) paste(food, "rocks!"))
#'
#' # Extract by name or position
#' # .default specifies value for elements that are missing or NULL
#' l1 <- list(list(a = 1L), list(a = NULL, b = 2L), list(b = 3L))
#' l1 |> map("a", .default = "???")
#' l1 |> map_int("b", .default = NA)
#' l1 |> map_int(2, .default = NA)
#'
#' # Supply multiple values to index deeply into a list
#' l2 <- list(
#' list(num = 1:3, letters[1:3]),
#' list(num = 101:103, letters[4:6]),
#' list()
#' )
#' l2 |> map(c(2, 2))
#'
#' # Use a list to build an extractor that mixes numeric indices and names,
#' # and .default to provide a default value if the element does not exist
#' l2 |> map(list("num", 3))
#' l2 |> map_int(list("num", 3), .default = NA)
#'
#' # Working with data frames
#' # Use map_lgl(), map_dbl(), etc to return a vector instead of a list:
#' mtcars |> map_dbl(sum)
#'
#' # A more realistic example: split a data frame into pieces, fit a
#' # model to each piece, summarise and extract R^2
#' mtcars |>
#' split(mtcars$cyl) |>
#' map(\(df) lm(mpg ~ wt, data = df)) |>
#' map(summary) |>
#' map_dbl("r.squared")
#'
#' @examplesIf interactive() && rlang::is_installed("mirai") && rlang::is_installed("carrier")
#' # Run in interactive sessions only as spawns additional processes
#'
#' # To use parallelized map:
#' # 1. Set daemons (number of parallel processes) first:
#' mirai::daemons(2)
#'
#' # 2. Wrap .f with in_parallel():
#' mtcars |> map_dbl(in_parallel(\(x) mean(x)))
#'
#' # Note that functions from packages should be fully qualified with `pkg::`
#' # or call `library(pkg)` within the function
#' 1:10 |>
#' map(in_parallel(\(x) vctrs::vec_init(integer(), x))) |>
#' map_int(in_parallel(\(x) { library(vctrs); vec_size(x) }))
#'
#' # A locally-defined function (or any required variables)
#' # should be passed via ... of in_parallel():
#' slow_lm <- function(formula, data) {
#' Sys.sleep(0.5)
#' lm(formula, data)
#' }
#'
#' mtcars |>
#' split(mtcars$cyl) |>
#' map(in_parallel(\(df) slow_lm(mpg ~ disp, data = df), slow_lm = slow_lm))
#'
#' # Tear down daemons when no longer in use:
#' mirai::daemons(0)
#'
map <- function(.x, .f, ..., .progress = FALSE) {
map_("list", .x, .f, ..., .progress = .progress)
}
#' @rdname map
#' @export
map_lgl <- function(.x, .f, ..., .progress = FALSE) {
map_("logical", .x, .f, ..., .progress = .progress)
}
#' @rdname map
#' @export
map_int <- function(.x, .f, ..., .progress = FALSE) {
map_("integer", .x, .f, ..., .progress = .progress)
}
#' @rdname map
#' @export
map_dbl <- function(.x, .f, ..., .progress = FALSE) {
map_("double", .x, .f, ..., .progress = .progress)
}
#' @rdname map
#' @export
map_chr <- function(.x, .f, ..., .progress = FALSE) {
local_deprecation_user_env()
map_("character", .x, .f, ..., .progress = .progress)
}
map_ <- function(
.type,
.x,
.f,
...,
.progress = FALSE,
.purrr_user_env = caller_env(2),
.purrr_error_call = caller_env()
) {
.x <- vctrs_vec_compat(.x, .purrr_user_env)
vec_assert(.x, arg = ".x", call = .purrr_error_call)
if (running_in_parallel(.f)) {
return(mmap_(.x, .f, .progress, .type, .purrr_error_call, ...))
}
.f <- as_mapper(.f, ...)
n <- vec_size(.x)
names <- vec_names(.x)
i <- 0L
with_indexed_errors(
i = i,
names = names,
error_call = .purrr_error_call,
call_with_cleanup(map_impl, environment(), .type, .progress, n, names, i)
)
}
mmap_ <- function(.x, .f, .progress, .type, error_call, ...) {
if (...length()) {
cli::cli_abort(
"Can't use `...` with parallelized functions.",
call = error_call
)
}
m <- mirai::mirai_map(.x, .f)
options <- c(".stop", if (isTRUE(.progress)) ".progress")
x <- with_parallel_indexed_errors(
mirai::collect_mirai(m, options = options),
interrupt_expr = mirai::stop_mirai(m),
error_call = error_call
)
if (.type != "list") {
x <- simplify_impl(x, ptype = vector(mode = .type), error_call = error_call)
}
x
}
#' @rdname map
#' @param .ptype If `NULL`, the default, the output type is the common type
#' of the elements of the result. Otherwise, supply a "prototype" giving
#' the desired type of output.
#' @export
map_vec <- function(.x, .f, ..., .ptype = NULL, .progress = FALSE) {
out <- map(.x, .f, ..., .progress = .progress)
simplify_impl(out, ptype = .ptype)
}
#' @rdname map
#' @export
walk <- function(.x, .f, ..., .progress = FALSE) {
map(.x, .f, ..., .progress = .progress)
invisible(.x)
}
with_indexed_errors <- function(
expr,
i,
names = NULL,
error_call = caller_env()
) {
withCallingHandlers(
expr,
error = function(cnd) {
if (i == 0L) {
# Error happened before or after loop
} else {
message <- c(i = "In index: {i}.")
if (!is.null(names) && !is.na(names[[i]]) && names[[i]] != "") {
name <- names[[i]]
message <- c(message, i = "With name: {name}.")
} else {
name <- NULL
}
cli::cli_abort(
message,
location = i,
name = name,
parent = cnd,
call = error_call,
class = "purrr_error_indexed"
)
}
}
)
}
with_parallel_indexed_errors <- function(
expr,
interrupt_expr = NULL,
error_call = caller_env()
) {
withCallingHandlers(
expr,
error = function(cnd) {
location <- cnd$location
iname <- cnd$name
cli::cli_abort(
c(
i = "In index: {location}.",
i = if (length(iname) && nzchar(iname)) "With name: {iname}."
),
location = location,
name = iname,
parent = cnd$parent,
call = error_call,
class = "purrr_error_indexed"
)
},
interrupt = function(cnd) {
interrupt_expr
}
)
}
#' Indexed errors (`purrr_error_indexed`)
#'
#' @description
#'
#' ```{r, child = "man/rmd/indexed-error.Rmd"}
#' ```
#'
#' @keywords internal
#' @name purrr_error_indexed
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.