Nothing
#' Word Frequency Matrix
#'
#' \code{wfm} - Generate a word frequency matrix by grouping variable(s).
#'
#' @param text.var The text variable.
#' @param grouping.var The grouping variables. Default \code{NULL} generates
#' one word list for all text. Also takes a single grouping variable or a list
#' of 1 or more grouping variables.
#' @param output Output type (either \code{"proportion"} or \code{"percent"}).
#' @param stopwords A vector of stop words to remove.
#' @param char2space A vector of characters to be turned into spaces. If
#' \code{char.keep} is \code{NULL}, \code{char2space} will activate this
#' argument.
#' @param \ldots Other arguments supplied to \code{\link[tm]{Corpus}} or
#' \code{\link[tm]{TermDocumentMatrix}}. If \code{as.wfm} this is other
#' arguments passed to \code{as.wfm} methods (currently ignored).
#' @param digits An integer indicating the number of decimal places (round) or
#' significant digits (signif) to be used. Negative values are allowed.
#' @param margins logical. If \code{TRUE} provides grouping.var and word
#' variable totals.
#' @param word.lists A list of character vectors of words to pass to
#' \code{wfm_combine}
#' @param matrix logical. If \code{TRUE} returns the output as a
#' \code{\link[qdap]{wfm}} rather than a \code{\link[qdap]{wfdf}} object.
#' @return \code{wfm} - returns a word frequency of the class matrix.
#' @rdname Word_Frequency_Matrix
#' @note Words can be kept as one by inserting a double tilde (\code{"~~"}), or
#' other character strings passed to char2space, as a single word/entry. This is
#' useful for keeping proper names as a single unit.
#' @keywords word-frequency-matrix
#' @export
#' @importFrom qdapTools mtabulate
#' @examples
#' \dontrun{
#' ## word frequency matrix (wfm) example:
#' with(DATA, wfm(state, list(sex, adult)))[1:15, ]
#' with(DATA, wfm(state, person))[1:15, ]
#' Filter(with(DATA, wfm(state, list(sex, adult))), 5)
#' with(DATA, wfm(state, list(sex, adult)))
#'
#' ## Filter particular words based on max/min values in wfm
#' v <- with(DATA, wfm(state, list(sex, adult)))
#' Filter(v, 5)
#' Filter(v, 5, count.apostrophe = FALSE)
#' Filter(v, 5, 7)
#' Filter(v, 4, 4)
#' Filter(v, 3, 4)
#' Filter(v, 3, 4, stopwords = Top25Words)
#'
#' ## insert double tilde ("~~") to keep phrases(i.e., first last name)
#' alts <- c(" fun", "I ")
#' state2 <- space_fill(DATA$state, alts, rm.extra = FALSE)
#' with(DATA, wfm(state2, list(sex, adult)))[1:18, ]
#'
#' ## word frequency dataframe (wfdf) example:
#' with(DATA, wfdf(state, list(sex, adult)))[1:15, ]
#' with(DATA, wfdf(state, person))[1:15, ]
#'
#' ## wfm_expanded example:
#' z <- wfm(DATA$state, DATA$person)
#' wfm_expanded(z)[30:45, ] #two "you"s
#'
#' ## wf_combine examples:
#' #===================
#' ## raw no margins (will work)
#' x <- wfm(DATA$state, DATA$person)
#'
#' ## raw with margin (will work)
#' y <- wfdf(DATA$state, DATA$person, margins = TRUE)
#'
#' ## Proportion matrix
#' z2 <- wfm(DATA$state, DATA$person, output="proportion")
#'
#' WL1 <- c(y[, 1])
#' WL2 <- list(c("read", "the", "a"), c("you", "your", "you're"))
#' WL3 <- list(bob = c("read", "the", "a"), yous = c("you", "your", "you're"))
#' WL4 <- list(bob = c("read", "the", "a"), yous = c("a", "you", "your", "your're"))
#' WL5 <- list(yous = c("you", "your", "your're"))
#' WL6 <- list(c("you", "your", "your're")) #no name so will be called words 1
#' WL7 <- c("you", "your", "your're")
#'
#' wfm_combine(z2, WL2) #Won't work not a raw frequency matrix
#' wfm_combine(x, WL2) #Works (raw and no margins)
#' wfm_combine(y, WL2) #Works (raw with margins)
#' wfm_combine(y, c("you", "your", "your're"))
#' wfm_combine(y, WL1)
#' wfm_combine(y, WL3)
#' ## wfm_combine(y, WL4) #Error
#' wfm_combine(y, WL5)
#' wfm_combine(y, WL6)
#' wfm_combine(y, WL7)
#'
#' worlis <- c("you", "it", "it's", "no", "not", "we")
#' y <- wfdf(DATA$state, list(DATA$sex, DATA$adult), margins = TRUE)
#' z <- wfm_combine(y, worlis)
#'
#' chisq.test(z)
#' chisq.test(wfm(y))
#'
#' ## Dendrogram
#' presdeb <- with(pres_debates2012, wfm(dialogue, list(person, time)))
#' library(sjPlot)
#' sjc.dend(t(presdeb), 2:4)
#'
#' ## Words correlated within turns of talk
#' ## EXAMPLE 1
#' library(qdapTools)
#' x <- factor(with(rajSPLIT, paste(act, pad(TOT(tot)), sep = "|")))
#' dat <- wfm(rajSPLIT$dialogue, x)
#'
#' cor(t(dat)[, c("romeo", "juliet")])
#' cor(t(dat)[, c("romeo", "banished")])
#' cor(t(dat)[, c("romeo", "juliet", "hate", "love")])
#' qheat(cor(t(dat)[, c("romeo", "juliet", "hate", "love")]),
#' diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL)
#'
#' dat2 <- wfm(DATA$state, id(DATA))
#' qheat(cor(t(dat2)), low = "yellow", high = "red",
#' grid = "grey90", diag.na = TRUE, by.column = NULL)
#'
#' ## EXAMPLE 2
#' x2 <- factor(with(pres_debates2012, paste(time, pad(TOT(tot)), sep = "|")))
#' dat2 <- wfm(pres_debates2012$dialogue, x2)
#' wrds <- word_list(pres_debates2012$dialogue,
#' stopwords = c("it's", "that's", Top200Words))
#' wrds2 <- tolower(sort(wrds$rfswl[[1]][, 1]))
#' qheat(word_cor(t(dat2), word = wrds2, r = NULL),
#' diag.na = TRUE, values = TRUE, digits = 3, by.column = NULL,
#' high="red", low="yellow", grid=NULL)
#'
#' ## EXAMPLE 3
#' library(gridExtra); library(ggplot2); library(grid)
#' dat3 <- lapply(qcv(OBAMA, ROMNEY), function(x) {
#' with(pres_debates2012, wfm(dialogue[person == x], x2[person == x]))
#' })
#'
#'
#' # Presidential debates by person
#' dat5 <- pres_debates2012
#' dat5 <- dat5[dat5$person %in% qcv(ROMNEY, OBAMA), ]
#'
#' disp <- with(dat5, dispersion_plot(dialogue, wrds2, grouping.var = person,
#' total.color = NULL, rm.vars=time))
#'
#'
#' cors <- lapply(dat3, function(m) {
#' word_cor(t(m), word = wrds2, r = NULL)
#' })
#'
#' plots <- lapply(cors, function(x) {
#' qheat(x, diag.na = TRUE, values = TRUE, digits = 3, plot = FALSE,
#' by.column = NULL, high="red", low="yellow", grid=NULL)
#' })
#'
#' plots <- lapply(1:2, function(i) {
#' plots[[i]] + ggtitle(qcv(OBAMA, ROMNEY)[i]) +
#' theme(axis.title.x = element_blank(),
#' plot.margin = unit(rep(0, 4), "lines"))
#' })
#'
#' grid.arrange(disp, arrangeGrob(plots[[1]], plots[[2]], ncol=1), ncol=2)
#'
#' ## With `word_cor`
#' worlis <- list(
#' pronouns = c("you", "it", "it's", "we", "i'm", "i"),
#' negative = qcv(no, dumb, distrust, not, stinks),
#' literacy = qcv(computer, talking, telling)
#' )
#' y <- wfdf(DATA$state, qdapTools::id(DATA, prefix = TRUE))
#' z <- wfm_combine(y, worlis)
#'
#' word_cor(t(z), word = names(worlis), r = NULL)
#'
#' ## Plotting method
#' plot(y, TRUE)
#' plot(z)
#'
#' ## Correspondence Analysis
#' library(ca)
#'
#' dat <- pres_debates2012
#' dat <- dat[dat$person %in% qcv(ROMNEY, OBAMA), ]
#'
#' speech <- stemmer(dat$dialogue)
#' mytable1 <- with(dat, wfm(speech, list(person, time), stopwords = Top25Words))
#'
#' fit <- ca(mytable1)
#' summary(fit)
#' plot(fit)
#' plot3d.ca(fit, labels=1)
#'
#'
#' mytable2 <- with(dat, wfm(speech, list(person, time), stopwords = Top200Words))
#'
#' fit2 <- ca(mytable2)
#' summary(fit2)
#' plot(fit2)
#' plot3d.ca(fit2, labels=1)
#'
#' ## Weight a wfm
#' WFM <- with(DATA, wfm(state, list(sex, adult)))
#' plot(weight(WFM, "scaled"), TRUE)
#' weight(WFM, "prop")
#' weight(WFM, "max")
#' weight(WFM, "scaled")
#' }
wfm <- function(text.var = NULL, grouping.var = NULL, output = "raw",
stopwords = NULL, char2space = "~~", ...){
text.var
grouping.var
output
stopwords
UseMethod("wfm")
}
#' \code{wfm.wfdf} - wfdf method for \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method wfm wfdf
wfm.wfdf <-
function(text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL,
char2space = "~~", ...){
if (methods::is(text.var, "t.df")) {
wfdf <- text.var
} else {
if (methods::is(text.var, "m.df")) {
wfdf <- text.var[-nrow(text.var), -ncol(text.var)]
} else {
stop("Object must be a raw word frequency data frame")
}
}
x2 <- wfdf[, -1, drop = FALSE]
rownames(x2) <- wfdf[, 1]
x2 <- as.matrix(x2)
class(x2) <- c("wfm", "true.matrix", class(x2))
x2
}
#' \code{wfm.character} - character method for \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method wfm character
wfm.character <-
function(text.var = NULL, grouping.var = NULL, output = "raw", stopwords = NULL,
char2space = "~~", ...){
if(is.null(stopwords)) stopwords <- FALSE
tm_tdm_interface(text.var = text.var, grouping.var = grouping.var,
output = output, stopwords = stopwords, char2space = char2space, ...)
}
#' \code{wfm.factor} - factor method for \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method wfm factor
wfm.factor <- wfm.character
## SAVE historical reasons
##
## ## more flexible slower wfm helper
## wfm_flexible <- function(text.var, grouping.var, output, stopwords,
## char2space, ...){
##
## if(is.null(grouping.var)){
## grouping <- rep("all", length(text.var))
## } else {
## if (is.list(grouping.var) & length(grouping.var)>1) {
## grouping <- paste2(grouping.var)
## } else {
## grouping <- unlist(grouping.var)
## }
## }
## txt <- strip(text.var, char.keep = char2space,
## apostrophe.remove = FALSE, ...)
## txtL <- lapply(split(txt, grouping), function(x) {
## unlist(strsplit(x, "\\s+"))
## })
##
## ## tabulate frequencies per word
## x2 <- t(mtabulate(txtL))
##
## ## replace spaced characters
## if (!is.null(char2space)) {
## rownames(x2) <- mgsub(char2space, " ", rownames(x2))
## }
##
## if (!is.null(stopwords)){
## x2 <- x2[!rownames(x2) %in% tolower(stopwords), , drop = FALSE]
## }
## if (output != "raw"){
## x2 <- x2/colSums(x2)
## if (output == "percent") {
## x2 <- x2*100
## }
## class(x2) <- c("wfm", "prop.matrix", class(x2))
## return(x2)
## }
##
## class(x2) <- c("wfm", "true.matrix", class(x2))
## x2
## }
##
## SAVE historical reasons
## less flexible faster wfm helper
tm_tdm_interface <- function(text.var, grouping.var, stopwords, char2space,
output = output, apostrophe.remove, ...){
if(is.null(grouping.var)) {
G <- "all"
} else {
if (is.list(grouping.var)) {
m <- unlist(as.character(substitute(grouping.var))[-1])
m <- sapply(strsplit(m, "$", fixed=TRUE), function(x) {
x[length(x)]
}
)
G <- paste(m, collapse="&")
} else {
G <- as.character(substitute(grouping.var))
G <- G[length(G)]
}
}
if(is.null(grouping.var)){
grouping <- rep("all", length(text.var))
} else {
if (is.list(grouping.var) & length(grouping.var)>1) {
grouping <- paste2(grouping.var)
} else {
grouping <- unlist(grouping.var)
}
}
DF <- data.frame(grouping, text.var, check.names = FALSE,
stringsAsFactors = FALSE)
## convert text.var to character and grouping.var to factor
DF[, "grouping"] <- factor(DF[, "grouping"])
DF[, "text.var"] <- as.character(DF[, "text.var"])
## Split apart by grouping variables and collapse text
LST <- sapply(split(DF[, "text.var"], DF[, "grouping"]),
paste, collapse = " ")
# LST_DF <- qdapTools::list2df(LST, "text.var", "grouping")
#
# ## Use the tm package to convert to a Corpus
# mycorpus <- tm::VCorpus(tm::DataframeSource(LST_DF),
# readerControl=list(reader=qdap_tm_reader))
LST_DF <- qdapTools::list2df(LST, "text", "doc_id")
# ## Use the tm package to convert to a Corpus
# mycorpus <- tm::VCorpus(tm::DataframeSource(LST_DF),
# readerControl=list(reader=qdap_tm_reader))
mycorpus <- tm::VCorpus(tm::DataframeSource(LST_DF))
## Add metadata info
NLP::meta(mycorpus, "MetaID") <- names(LST)
NLP::meta(mycorpus, "labels") <- names(LST)
pers <- unname(Sys.info()["user"])
if (!is.null(pers)) {
tm::DublinCore(mycorpus, tag = "creator") <- pers
}
if(missing(apostrophe.remove)) apostrophe.remove <- FALSE
apo_rm <- TRUE
if(!apostrophe.remove) {
apo_rm <- function(x) gsub(paste0(".*?($|'|", paste(paste0("\\",
char2space), collapse = "|"), "|[^[:punct:]]).*?"),
"\\1", x)
}
pdots <- eval(substitute(list(...)))
if(is.null(pdots[["removeNumbers"]])) {
rmnum <- TRUE
} else {
rmnum <- pdots[["removeNumbers"]]
}
m <- as.wfm(tm::TermDocumentMatrix(mycorpus,
control = list(
removePunctuation = apo_rm,
wordLengths =c(1, Inf),
stopwords = stopwords,
removeNumbers = rmnum, ...
)
))
colnames(m) <- names(LST)
rownames(m) <- mgsub(char2space, " ", rownames(m))
m <- m[rownames(m) != "", ]
if (!is.matrix(m)) {
m <- as.matrix(m)
colnames(m) <- G
}
if (output != "raw"){
m <- m/colSums(m)
if (output == "percent") {
m <- m*100
}
class(m) <- gsub("true.matrix", "prop.matrix", class(m))
return(m)
}
class(m) <- c("wfm", "true.matrix", class(m))
m
}
#' Prints a wfm Object
#'
#' Prints a wfm object.
#'
#' @param x The wfm object.
#' @param width The width to temporarily set for printing (default = 10000).
#' See \code{\link[base]{options}} for more.
#' @param digits The number of digits displayed if \code{values} is \code{TRUE}.
#' @param \ldots ignored
#' @method print wfm
#' @export
print.wfm <-
function(x, digits = 3, width = 10000, ...) {
class(x) <- "matrix"
WD <- options()[["width"]]
if (!is.null(width)) {
options(width=width)
}
print(round(x, digits = digits))
options(width=WD)
}
#' Word Frequency Data Frame
#'
#' \code{wfdf} - Generate a word frequency data frame by grouping variable.
#'
#' @rdname Word_Frequency_Matrix
#' @export
#' @return \code{wfdf} - returns a word frequency of the class data.frame with
#' a words column and optional margin sums.
wfdf <-
function(text.var, grouping.var = NULL, stopwords = NULL,
margins = FALSE, output = "raw", digits = 2, char2space = "~~", ...){
if(is.null(grouping.var)){
grouping <- rep("all", length(text.var))
} else {
if (is.list(grouping.var) & length(grouping.var)>1) {
grouping <- paste2(grouping.var)
} else {
grouping <- unlist(grouping.var)
}
}
bl <- split(text.var, grouping)
x <- lapply(bl, bag_o_words, char.keep = char2space, ...)
tabs <- lapply(x, function(x) as.data.frame(table(x)))
tabs <- tabs[sapply(tabs, nrow)!=0]
lapply(seq_along(tabs), function(x) {
names(tabs[[x]]) <<- c("Words", names(tabs)[x])
})
DF <- merge_all(tabs, by="Words", 0)
DF <- DF[order(DF$Words), ]
DF[, "Words"] <- as.character(DF[, "Words"])
DF[, -1] <- sapply(DF[, -1], function(x) as.numeric(as.character(x)))
if(!is.null(stopwords)) DF <- DF[!DF[, "Words"] %in% stopwords , ]
rownames(DF) <- 1:nrow(DF)
pro <- function(x) x/sum(x) #helper function 1
per <- function(x) 100*(x/sum(x)) #helper function 2
if (output != "raw") DF2 <- DF
DF <- switch(output,
raw = DF,
proportion = {data.frame(DF[, 1, drop = FALSE],
sapply(DF[, -1], pro))},
prop = data.frame(DF[, 1, drop = FALSE], sapply(DF[, -1], pro)),
percent = data.frame(DF[, 1, drop = FALSE], sapply(DF[, -1], per)),
per = data.frame(DF[, 1, drop = FALSE], sapply(DF[, -1], per))
)
if (margins){
if (output == "raw"){
DF <- rbind(DF, c(NA, colSums(DF[, -1])))
DF[nrow(DF), 1] <- "TOTAL.WORDS ->"
DF[, "TOTAL.USES"] <- rowSums(DF[, -1])
} else {
X <- rowSums(DF2[, -1])
DF[, "TOTAL.USES"] <- c(X/sum(X))
X2 <- colSums(DF2[, -1])
DF <- rbind(DF, c(NA, X2/sum(X), 1))
DF[nrow(DF), 1] <- "TOTAL.WORDS ->"
}
}
if (!output == "raw") {
DF2 <- lapply(DF[, -1], function(x) round(x, digits = digits))
DF <- data.frame(DF[, 1, drop = FALSE], DF2)
}
if (!margins & output == "raw") {
class(DF) <- c("t.df", class(DF))
} else {
if (margins & output == "raw") {
class(DF) <- c("m.df", class(DF))
} else {
class(DF) <- c("f.df", class(DF))
}
}
if (!is.null(char2space)) {
DF[, "Words"] <- mgsub(char2space, " ", DF[, "Words"])
}
class(DF) <- c("wfdf", class(DF))
DF
}
#' Expanded Word Frequency Matrix
#'
#' \code{wfm_expanded} - Expand a word frequency matrix to have multiple rows
#' for each word.
#'
#' @rdname Word_Frequency_Matrix
#' @export
#' @return \code{wfm_expanded} - returns a matrix similar to a word frequency
#' matrix (\code{wfm}) but the rows are expanded to represent the maximum usages
#' of the word and cells are dummy coded to indicate that number of uses.
wfm_expanded <-
function(text.var, grouping.var = NULL, ...){
if(methods::is(text.var, "true.matrix")) {
z <- text.var
} else {
if(methods::is(text.var, "m.df")){
z <- wfm(text.var)
} else {
z <- wfm(text.var, grouping.var, ...)
}
}
rows <-lapply(1:nrow(z), function(i) z[i, ])
names(rows) <- rownames(z)
lens <- sapply(1:nrow(z), function(i) max(z[i, ]))
rep(rownames(z), lens)
repper <- function(R) {
mx <- max(R)
sapply(R, function(x) c(rep(1, x), rep(0, mx-x)))
}
expanded <- do.call(rbind, lapply(1:nrow(z), function(i) repper(z[i, ])))
rownames(expanded) <- rep(rownames(z), lens)
expanded
}
#' Combined Word Frequency Matrix Terms
#'
#' \code{wfm_combine} - Combines words (rows) of a word frequency matrix
#' (\code{wfdf}) together.
#'
#' @param wf.obj A \code{wfm} or \code{wfdf} object.
#' @rdname Word_Frequency_Matrix
#' @export
#' @return \code{wfm_combine} - returns a word frequency matrix (\code{wfm}) or
#' dataframe (\code{wfdf}) with counts for the combined word.lists merged and
#' remaining terms (\code{else}).
wfm_combine <- function(wf.obj, word.lists, matrix = TRUE){
suppressWarnings(if (is.list(word.lists) & length(word.lists) > 1 &
any(Reduce("%in%", word.lists))) {
stop("overlapping words in word.lists")
})
if (methods::is(wf.obj, "t.df")) {
wf.obj <- wf.obj
} else {
if (methods::is(wf.obj, "m.df")) {
wf.obj <- wf.obj [-nrow(wf.obj), -ncol(wf.obj)]
} else {
if (!methods::is(wf.obj, "true.matrix")) {
stop("Object must be a raw word frequency matrix/data.frame")
}
}
}
if (is.list(word.lists) & is.null(names(word.lists))){
NAMES <- paste("words", 1:length(word.lists))
} else {
if (is.list(word.lists) & !is.null(names(word.lists))){
NAMES <- names(word.lists)
} else {
if (is.vector(word.lists)) {
G <- as.character(substitute(word.lists))
if (G[1] == "c") {
NAMES <- "words"
} else {
NAMES <- G[length(G)]
}
} else {
stop("incorrect word.list argument")
}
}
}
if(!is.list(word.lists)) {
word.lists <- list(word.lists)
}
if (methods::is(wf.obj, "true.matrix")) {
wf.obj <- data.frame(rownames(wf.obj), wf.obj, check.names = FALSE)
}
j <- lapply(word.lists, function(x) wf.obj [wf.obj [, 1] %in% x, -1])
if (!all(wf.obj [, 1] %in% unlist(word.lists))) {
j[[length(j) + 1]] <- wf.obj [!wf.obj [, 1] %in% unlist(word.lists), -1]
}
k <- lapply(j, function(x) if(is.vector(x)) { x } else { colSums(x)})
m <- do.call("rbind", k)
rownames(m) <- 1:nrow(m)
NAMES <- if (all(wf.obj[, 1] %in% unlist(word.lists))) {
NAMES
} else {
c(NAMES, "else.words")
}
DFF <- data.frame(word.group = NAMES, m, check.names = FALSE)
if (matrix) {
DFF2 <- as.matrix(DFF[, -1])
rownames(DFF2) <- as.character(DFF[, 1])
return(as.wfm(DFF2))
}
class(DFF) <- c("wfdf", class(DFF))
DFF
}
#' Plots a wfm object
#'
#' Plots a wfm object.
#'
#' @param x The wfm object
#' @param non.zero logical. If \code{TRUE} all values converted to dummy coded
#' based on x_ij > 0.
#' @param digits The number of digits displayed if \code{values} is \code{TRUE}.
#' @param by.column logical. If \code{TRUE} applies scaling to the column. If
#' \code{FALSE} applies scaling by row (use \code{NULL} to turn off scaling).
#' @param high The color to be used for higher values.
#' @param grid The color of the grid (Use \code{NULL} to remove the grid).
#' @param plot logical. If \code{TRUE} the plot will automatically plot.
#' The user may wish to set to \code{FALSE} for use in knitr, sweave, etc.
#' to add additional plot layers.
#' @param \ldots Other arguments passed to qheat.
#' @method plot wfm
#' @export
plot.wfm <- function(x, non.zero = FALSE, digits = 0, by.column = NULL,
high = ifelse(non.zero, "black", "blue"),
grid = ifelse(non.zero, "black", "white"), plot = TRUE, ...) {
class(x) <- "matrix"
if (non.zero) {
if(missing(by.column)) {
by.column <- NULL
}
x <- data.frame(x)
x[1:ncol(x)] <- lapply(x, function(z) as.numeric(z > 0))
} else {
if(missing(by.column)) {
by.column <- FALSE
}
}
out <- qheat(t(x), digits = digits, high=high, grid = grid,
by.column = by.column, plot = FALSE, ...)
if (non.zero) {
out <- out + guides(fill=FALSE)
}
if (plot) {
print(out)
}
invisible(out)
}
#' Plots a wfdf object
#'
#' Plots a wfdf object.
#'
#' @param x The wfdf object
#' @param \ldots Other arguments passed to \code{\link[qdap]{plot.wfm}}.
#' @method plot wfdf
#' @export
plot.wfdf <- function(x, ...) {
x <- wfm(x)
plot.wfm(x, ...)
}
#' Summarize a wfm object
#'
#' Summarize a wfm object with familiar tm package look.
#'
#' @param object The wfm object
#' @param \ldots Ignored.
#' @method summary wfm
#' @details \strong{Non-/sparse entries} is the ratio of non-zeros to zero
#' counts. \strong{Sparsity} is that ratio represented as a percent.
#' \strong{Hapax legomenon} is the number(percent) of terms that appear only
#' once in the dialogue. \strong{Dis legomenon} is the number(percent) of terms
#' that appear exactly two times once.
#' @export
#' @examples
#' \dontrun{
#' x <- with(DATA, wfm(state, list(sex, adult)))
#' summary(x)
#' }
summary.wfm <- function(object, ...) {
class(object) <- "matrix"
x <- object
B <- x!=0
Y <- sum(B)
N <- sum(!B)
density <- Y/(N + Y)
sparsity <- round(1 - density, 2)*100
NCHAR <- nchar(rownames(x))
RS <- rowSums(x)
HL <- sum(RS == 1)
DL <- sum(RS == 2)
shan <- shannon(RS)
output <- list(
c(Y, N),
c(sparsity),
c(max(NCHAR)),
c(sum(NCHAR < 4)/nrow(x)),
c(HL, HL/nrow(x)),
c(DL, DL/nrow(x)),
c(shan)
)
names(output) <- c("Non-/sparse entries", "Sparsity",
"Maximal term length", "Less than four characters",
"Hapax legomenon", "Dis legomenon", "Shannon's diversity index"
)
attributes(output) <- list(
class = c("wfm_summary"),
names = names(output),
nrow = nrow(x),
ncol = ncol(x)
)
output
}
#' Prints a wfm_summary Object
#'
#' Prints a wfm_summary object.
#'
#' @param x The wfm_summary object.
#' @param \ldots ignored
#' @method print wfm_summary
#' @export
print.wfm_summary <- function(x, ...) {
nms <- c("Non-/sparse entries", "Sparsity",
"Maximal term length", "Less than four characters",
"Hapax legomenon", "Dis legomenon", "Shannon's diversity index"
)
numrow <- attributes(x)[["nrow"]]
numcol <- attributes(x)[["ncol"]]
class(x) <- "list"
if (!all(nms %in% names(x))) {
print(x)
return(invisible(NULL))
}
vals <- c(
sprintf("<<A word-frequency matrix (%s terms, %s groups)>>", numrow, numcol),
"", sprintf("Non-/sparse entries : %s/%s", x[[nms[1]]][1], x[[nms[1]]][2]),
sprintf("Sparsity : %s%%", x[[nms[2]]]),
sprintf("Maximal term length : %s", x[[nms[3]]]) ,
sprintf("Less than four characters : %s%%", 100*round(x[[nms[4]]], 2)) ,
sprintf("Hapax legomenon : %s(%s%%)", x[[nms[5]]][1], 100*round(x[[nms[5]]][2], 2)),
sprintf("Dis legomenon : %s(%s%%)", x[[nms[6]]][1], 100*round(x[[nms[6]]][2], 2)),
sprintf("Shannon's diversity index : %s\n", round(x[[nms[7]]], 2))
)
cat(paste(vals, collapse="\n"))
}
#' Summarize a wfdf object
#'
#' Summarize a wfdf object with familiar tm package look.
#'
#' @param object The wfdf object
#' @param \ldots Ignored.
#' @details \strong{Non-/sparse entries} is the ratio of non-zeros to zero
#' counts. \strong{Sparsity} is that ratio represented as a percent.
#' \strong{Hapax legomenon} is the number(percent) of terms that appear only
#' once in the dialogue. \strong{Dis legomenon} is the number(percent) of terms
#' that appear exactly two times once.
#' @method summary wfdf
#' @export
#' @examples
#' \dontrun{
#' x <- with(DATA, wfdf(state, list(sex, adult)))
#' summary(x)
#' }
summary.wfdf <- function(object, ...) {
summary.wfm(wfm(object))
}
#' Weighted Word Frequency Matrix
#'
#' \code{weight} - Weight a word frequency matrix for analysis where such
#' weighting is sensible.
#'
#' @param type The type of weighting to use: c(\code{"prop"}, \code{"max"},
#' \code{"scaled"}). All weight by column. \code{"prop"} uses a proportion
#' weighting and all columns sum to 1. \code{"max"} weights in proportion to
#' the max value; all values are integers and column sums may not be equal.
#' \code{"scaled"} uses \code{\link[base]{scale}} to scale with
#' \code{center = FALSE}; output is not integer and column sums may not be
#' equal.
#' @rdname Word_Frequency_Matrix
#' @export
#' @return \code{weight} - Returns a weighted matrix for use with other R
#' packages. The output is not of the class "wfm".
#' @export
#' @method weight wfm
weight.wfm <- function(x, type = "prop", ...) {
if (methods::is(x, "wfdf") && !methods::is(x, "f.df")) {
x <- wfm(x)
}
types <- c("prop", "max", "scaled")
if (is.numeric(type)) {
type <- types[type]
}
switch(type,
prop = {FUN <- function(x) apply(x, 2, function(y) y/sum(y))},
max = {FUN <- function(x) apply(x, 2, function(y) round(y *(max(x)/max(y)), 0))},
scaled = {FUN <- function(x) {
o <- apply(x, 2, function(y) scale(y, FALSE))
rownames(o) <- rownames(x)
o
}} ,
stop("`type` must be one of c(\"prop\", \"max\", \"scaled\")")
)
out <- FUN(x)
class(out) <- c("weighted_wfm", class(out))
attributes(out)[["weighting"]] <- type
out
}
#' Weighted Word Frequency Matrix
#'
#' \code{weight.wfdf} - Weight a word frequency matrix for analysis where such
#' weighting is sensible.
#'
#' @rdname Word_Frequency_Matrix
#' @export
#' @method weight wfdf
weight.wfdf <- function(x, type = "prop", ...) {
if (methods::is(x, "wfdf") && !methods::is(x, "f.df")) {
x <- wfm(x)
} else {
stop(paste("no applicable method for 'weight' applied to an object of", "class \"wfdf\" that is proportional"))
}
types <- c("prop", "max", "scaled")
if (is.numeric(type)) {
type <- types[type]
}
switch(type,
prop = {FUN <- function(x) apply(x, 2, function(y) y/sum(y))},
max = {FUN <- function(x) apply(x, 2, function(y) round(y *(max(x)/max(y)), 0))},
scaled = {FUN <- function(x) {
o <- apply(x, 2, function(y) scale(y, FALSE))
rownames(o) <- rownames(x)
o
}} ,
stop("`type` must be one of c(\"prop\", \"max\", \"scaled\")")
)
out <- FUN(x)
class(out) <- c("weighted_wfm", class(out))
attributes(out)[["weighting"]] <- type
out
}
#' Plots a weighted_wfm object
#'
#' Plots a weighted_wfm object.
#'
#' @param x The weighted_wfm object
#' @param non.zero logical. If \code{TRUE} all values converted to dummy coded
#' based on x_ij > 0.
#' @param digits The number of digits displayed if \code{values} is \code{TRUE}.
#' @param by.column logical. If \code{TRUE} applies scaling to the column. If
#' \code{FALSE} applies scaling by row (use \code{NULL} to turn off scaling).
#' @param high The color to be used for higher values.
#' @param grid The color of the grid (Use \code{NULL} to remove the grid).
#' @param plot logical. If \code{TRUE} the plot will automatically plot.
#' The user may wish to set to \code{FALSE} for use in knitr, sweave, etc.
#' to add additional plot layers.
#' @param \ldots Other arguments passed to qheat.
#' @method plot weighted_wfm
#' @export
plot.weighted_wfm <- function(x, non.zero = FALSE, digits = 0, by.column = NULL,
high = ifelse(non.zero, "black", "blue"),
grid = ifelse(non.zero, "black", "white"), plot = TRUE, ...) {
class(x) <- "matrix"
if (non.zero) {
if(missing(by.column)) {
by.column <- NULL
}
x <- data.frame(x)
x[1:ncol(x)] <- lapply(x, function(z) as.numeric(z > 0))
} else {
if(missing(by.column)) {
by.column <- FALSE
}
}
out <- qheat(t(x), digits = digits, high=high, grid = grid,
by.column = by.column, plot = FALSE, ...)
if (non.zero) {
out <- out + guides(fill=FALSE)
}
if (plot) {
print(out)
}
invisible(out)
}
#' Filter
#'
#' \code{Filter} - Filter words from various objects that meet max/min word
#' length criteria.
#'
#' @param x A filterable object (e.g., \code{\link[qdap]{wfm}},
#' \code{\link[base]{character}}).
#' @param min Minimum word length.
#' @param max Maximum word length.
#' @param count.apostrophe logical. If \code{TRUE} apostrophes are counted as
#' characters.
#' @param stopwords A vector of stop words to remove.
#' @param ignore.case logical. If \code{TRUE} stopwords will be removed
#' regardless of case (ignored if used on a \code{\link[qdap]{wfm}}).
#' @param \ldots Other arguments passed to specific Filter methods.
#' @rdname Filter
#' @note The name and idea behind this function is inspired by the \pkg{dplyr}
#' package's \code{filter} function and has a similar meaning in that you are
#' grabbing rows (or elements) meeting a particular criteria.
#' @export
#' @examples
#' \dontrun{
#' Filter(with(DATA, wfm(state, list(sex, adult))), 5)
#' with(DATA, wfm(state, list(sex, adult)))
#'
#' ## Filter particular words based on max/min values in wfm
#' v <- with(DATA, wfm(state, list(sex, adult)))
#' Filter(v, 5)
#' Filter(v, 5, count.apostrophe = FALSE)
#' Filter(v, 5, 7)
#' Filter(v, 4, 4)
#' Filter(v, 3, 4)
#' Filter(v, 3, 4, stopwords = Top25Words)
#'
#' ## Filter works on character strings too...
#' x <- c("Raptors don't like robots!", "I'd pay $500.00 to rid them.")
#' Filter(x, 3)
#' Filter(x, 4)
#' Filter(x, 4, count.apostrophe = FALSE)
#' Filter(x, 4, count.apostrophe = FALSE, stopwords="raptors")
#' Filter(x, 4, stopwords="raptors")
#' Filter(x, 4, stopwords="raptors", ignore.case = FALSE)
#'
#' DATA[, "state"] <- Filter(DATA[, "state"], 4)
#' DATA <- qdap::DATA
#'
#' ## Filter `all_words`
#' head(all_words(raj$dialogue))
#' Filter(head(all_words(raj$dialogue)), min = 3)
#' }
Filter <-
function(x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL,
ignore.case = TRUE, ...){
min
max
count.apostrophe
stopwords
ignore.case
UseMethod("Filter")
}
#' Word Frequency Matrix
#'
#' \code{Filter.wfm} - Filter words from a wfm that meet max/min word length
#' criteria.
#'
#' @rdname Filter
#' @export
#' @method Filter wfm
#' @return \code{Filter} - Returns a matrix of the class "wfm".
Filter.wfm <-
function(x, min = 1, max = Inf, count.apostrophe = TRUE, stopwords = NULL,
...) {
if (!is.null(stopwords)) {
x <- x[!rownames(x) %in% stopwords, ]
}
nms <- rownames(x)
if (!count.apostrophe) {
nms <- gsub("'", "", nms)
}
lens <- nchar(nms)
as.wfm(x[lens >= min & lens <= max, ])
}
#' @export
Filter.default <- function(x, ...) base::Filter
#function(..., min = 1, max = Inf, count.apostrophe, stopwords = NULL, x){
# LIS <- list(...)
# return(Filter.wfm(LIS, min, max, count.apostrophe))
#}
is.Integer <-
function(x, tol = .Machine$double.eps^0.5) abs(x - round(x)) < tol
#' Filter
#'
#' \code{Filter.character} - Filter words from a character vector that meet
#' max/min word length criteria.
#'
#' character Method for Filter
#' @rdname Filter
#' @export
#' @method Filter character
#' @return \code{Filter.character} - Returns a vector of the class "character".
#' @return \code{Filter.wfm} - Returns a matrix of the class "wfm".
Filter.character <- function(x, min = 1, max = Inf, count.apostrophe = TRUE,
stopwords = NULL, ignore.case = TRUE, ...) {
splits <- "(\\s+)|%s(?=[[:punct:]])"
splits <- sprintf(splits, ifelse(count.apostrophe, "(?!')", ""))
x2 <- lapply(strsplit(x, splits, perl = TRUE), function(y) {
unblanker(unlist(y))
})
if (!is.null(stopwords)) {
if (ignore.case) {
stopwords <- c(stopwords, sapply(stopwords, Caps))
}
x2 <- lapply(x2, function(x) x[!x %in% stopwords])
}
mapply(function(a, b) {paste(a[b >= min & b <= max],
collapse = " ")}, x2, lapply(x2, nchar))
}
#' Word Frequency Matrix
#'
#' \code{as.wfm} - Attempts to coerce a matrix to a \code{\link[qdap]{wfm}}.
#'
#' @param x An object with words for row names and integer values.
#' @rdname Word_Frequency_Matrix
#' @export
#' @return \code{as.wfm} - Returns a matrix of the class "wfm".
as.wfm <- function(x, ...){
x
UseMethod("as.wfm")
}
#' \code{as.wfm.matrix} - \code{matrix} method for \code{as.wfm} used to
#' convert matrices to a \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method as.wfm matrix
as.wfm.matrix <- function(x, ...) {
if(!all(is.Integer(x))){
stop("x must contain only integer values")
}
class(x) <- c("wfm", "true.matrix", class(x))
x
}
#' \code{as.wfm.default} - Default method for \code{as.wfm} used to
#' convert matrices to a \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method as.wfm default
as.wfm.default <- function(x, ...) {
if(!all(is.Integer(x))){
stop("x must contain only integer values")
}
warning("Not a matrix.object; may not convert correctly", immediate. = TRUE)
x <- as.matrix(x)
class(x) <- c("wfm", "true.matrix", class(x))
x
}
#' \code{as.wfm.TermDocumentMatrix} - \code{TermDocumentMatrix} method for
#' \code{as.wfm} used to a \code{TermDocumentMatrix} to a \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method as.wfm TermDocumentMatrix
as.wfm.TermDocumentMatrix <- function(x, ...) {
tm2qdap(x)
}
#' \code{as.wfm.DocumentTermMatrix} - \code{DocumentTermMatrix} method for
#' \code{as.wfm} used to a \code{DocumentTermMatrix} to a \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method as.wfm DocumentTermMatrix
as.wfm.DocumentTermMatrix <- function(x, ...) {
tm2qdap(x)
}
#' \code{as.wfm.data.frame} - data.frame method for \code{as.wfm} used to
#' convert matrices to a \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method as.wfm data.frame
as.wfm.data.frame <- function(x, ...) {
if(!all(is.Integer(x))){
stop("x must contain only integer values")
}
x <- as.matrix(x)
class(x) <- c("wfm", "true.matrix", class(x))
x
}
#' \code{as.wfm.wfdf} - wfdf method for \code{as.wfm} used to
#' convert matrices to a \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method as.wfm wfdf
as.wfm.wfdf <- function(x, ...) {
wfm(x)
}
#' \code{as.wfm.Corpus} - Corpus method for \code{as.wfm} used to
#' convert matrices to a \code{wfm}.
#' @param col The column name (generally not used).
#' @param row The row name (generally not used).
#' @rdname Word_Frequency_Matrix
#' @export
#' @method as.wfm Corpus
as.wfm.Corpus <- function(x, col = "docs", row = "text", ...) {
text <- docs <- NULL
with(as.data.frame(x, col1 = col, col2 = row, sent.split = FALSE),
wfm(text, docs, ...))
}
#' \code{wfm.Corpus} - Corpus method for \code{wfm}.
#' @rdname Word_Frequency_Matrix
#' @export
#' @method wfm Corpus
wfm.Corpus <- function(text.var, ...){
as.wfm.Corpus(x=text.var)
}
## tm Package Compatibility Tools: Apply to or Convert to/from Term Document
## Matrix or Document Term Matrix
##
## \code{tm2qdap} - Convert the \pkg{tm} package's
## \code{\link[tm]{TermDocumentMatrix}}/\code{\link[tm]{DocumentTermMatrix}} to
## \code{\link[qdap]{wfm}}.
##
## @param x A \code{\link[tm]{TermDocumentMatrix}}/\code{\link[tm]{DocumentTermMatrix}}.
## @return \code{tm2qdap} - Returns a \code{\link[qdap]{wfm}} object or
## \code{weight} object.
## @rdname
## INTERNAL HELPER FUNCTION TO CONVERT "DocumentTermMatrix", "TermDocumentMatrix"
## TO "wfm"
tm2qdap <- function(x) {
opts <- c("DocumentTermMatrix", "TermDocumentMatrix")
cls <- opts[opts %in% class(x)]
if (cls == "DocumentTermMatrix") {
x <- t(x)
}
y <- as.matrix(data.frame(as.matrix(x), check.names = FALSE))
if(!any(attributes(x)[["weighting"]] %in% "tf")){
class(y) <- c("weighted_wfm", class(y))
} else {
class(y) <- c("wfm", "true.matrix", class(y))
}
y
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.