Nothing
#' Scaling numeric data
#'
#' `step_scale()` creates a *specification* of a recipe step that will normalize
#' numeric data to have a standard deviation of one.
#'
#' @inheritParams step_center
#' @param sds A named numeric vector of standard deviations. This is `NULL`
#' until computed by [prep()].
#' @param factor A numeric value of either 1 or 2 that scales the
#' numeric inputs by one or two standard deviations. By dividing
#' by two standard deviations, the coefficients attached to
#' continuous predictors can be interpreted the same way as with
#' binary inputs. Defaults to `1`. More in reference below.
#' @param na_rm A logical value indicating whether `NA`
#' values should be removed when computing the standard deviation.
#' @template step-return
#' @family normalization steps
#' @export
#' @details Scaling data means that the standard deviation of a
#' variable is divided out of the data. `step_scale` estimates
#' the variable standard deviations from the data used in the
#' `training` argument of `prep.recipe`.
#' `bake.recipe` then applies the scaling to new data sets
#' using these standard deviations.
#'
#' # Tidying
#'
#' When you [`tidy()`][tidy.recipe()] this step, a tibble is returned with
#' columns `terms`, `value` , and `id`:
#'
#' \describe{
#' \item{terms}{character, the selectors or variables selected}
#' \item{value}{numeric, the standard deviations}
#' \item{id}{character, id of this step}
#' }
#'
#' @template case-weights-unsupervised
#'
#' @references Gelman, A. (2007) "Scaling regression inputs by
#' dividing by two standard deviations." Unpublished. Source:
#' \url{http://www.stat.columbia.edu/~gelman/research/unpublished/standardizing.pdf}.
#' @examplesIf rlang::is_installed("modeldata")
#' data(biomass, package = "modeldata")
#'
#' biomass_tr <- biomass[biomass$dataset == "Training", ]
#' biomass_te <- biomass[biomass$dataset == "Testing", ]
#'
#' rec <- recipe(
#' HHV ~ carbon + hydrogen + oxygen + nitrogen + sulfur,
#' data = biomass_tr
#' )
#'
#' scaled_trans <- rec %>%
#' step_scale(carbon, hydrogen)
#'
#' scaled_obj <- prep(scaled_trans, training = biomass_tr)
#'
#' transformed_te <- bake(scaled_obj, biomass_te)
#'
#' biomass_te[1:10, names(transformed_te)]
#' transformed_te
#' tidy(scaled_trans, number = 1)
#' tidy(scaled_obj, number = 1)
step_scale <-
function(recipe,
...,
role = NA,
trained = FALSE,
sds = NULL,
factor = 1,
na_rm = TRUE,
skip = FALSE,
id = rand_id("scale")) {
add_step(
recipe,
step_scale_new(
terms = enquos(...),
role = role,
trained = trained,
sds = sds,
factor = factor,
na_rm = na_rm,
skip = skip,
id = id,
case_weights = NULL
)
)
}
step_scale_new <-
function(terms, role, trained, sds, factor, na_rm, skip, id, case_weights) {
step(
subclass = "scale",
terms = terms,
role = role,
trained = trained,
sds = sds,
factor = factor,
na_rm = na_rm,
skip = skip,
id = id,
case_weights = case_weights
)
}
#' @export
prep.step_scale <- function(x, training, info = NULL, ...) {
col_names <- recipes_eval_select(x$terms, training, info)
check_type(training[, col_names], types = c("double", "integer"))
wts <- get_case_weights(info, training)
were_weights_used <- are_weights_used(wts, unsupervised = TRUE)
if (isFALSE(were_weights_used)) {
wts <- NULL
}
if (x$factor != 1 & x$factor != 2) {
cli::cli_warn(
"Scaling {.arg factor} should take either a value of 1 or 2, \\
not {x$factor}."
)
}
vars <- variances(training[, col_names], wts, na_rm = x$na_rm)
sds <- sqrt(vars)
sds <- sd_check(sds)
sds <- sds * x$factor
step_scale_new(
terms = x$terms,
role = x$role,
trained = TRUE,
sds = sds,
factor = x$factor,
na_rm = x$na_rm,
skip = x$skip,
id = x$id,
case_weights = were_weights_used
)
}
#' @export
bake.step_scale <- function(object, new_data, ...) {
col_names <- names(object$sds)
check_new_data(col_names, object, new_data)
for (col_name in col_names) {
sd <- object$sds[col_name]
new_data[[col_name]] <- new_data[[col_name]] / sd
}
new_data
}
#' @export
print.step_scale <-
function(x, width = max(20, options()$width - 30), ...) {
title <- "Scaling for "
print_step(names(x$sds), x$terms, x$trained, title, width,
case_weights = x$case_weights)
invisible(x)
}
#' @rdname tidy.recipe
#' @export
tidy.step_scale <- function(x, ...) {
if (is_trained(x)) {
res <- tibble(
terms = names(x$sds),
value = unname(x$sds)
)
} else {
term_names <- sel2char(x$terms)
res <- tibble(
terms = term_names,
value = na_dbl
)
}
res$id <- x$id
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.