inst/pls_test_references.R

library(mixOmics)
library(dplyr)
library(modeldata)
library(stringr)

data(biomass, package = "modeldata")

biom_tr <- biomass |>
  dplyr::filter(dataset == "Training") |>
  dplyr::select(-dataset, -sample)
biom_te <- biomass |>
  dplyr::filter(dataset == "Testing") |>
  dplyr::select(-dataset, -sample, -HHV)

data(cells, package = "modeldata")

cell_tr <- cells |>
  dplyr::filter(case == "Train") |>
  dplyr::select(-case)
cell_te <- cells |>
  dplyr::filter(case == "Test") |>
  dplyr::select(-case, -class)

# pls 1 outcome ----------------------------------------------------------------
bm_pls_fit <- pls(
  X = biom_tr[, -6],
  biom_tr[, 6],
  ncomp = 3,
  scale = TRUE
)

bm_pls_tr <- bm_pls_fit$variates$X |>
  as_tibble() |>
  rename_with(str_replace, pattern = "comp", replacement = "PLS")

bm_pls_te <- predict(bm_pls_fit, biom_te[, -6])$variates |>
  as_tibble() |>
  rename_with(str_replace, pattern = "dim", replacement = "PLS")

# pls 2 outcomes ---------------------------------------------------------------
bm_pls_multi_fit <- pls(
  X = biom_tr[, -c(1, 6)],
  biom_tr[, c(1, 6)],
  ncomp = 3,
  scale = TRUE
)

bm_pls_multi_tr <- bm_pls_multi_fit$variates$X |>
  as_tibble() |>
  rename_with(str_replace, pattern = "comp", replacement = "PLS")

bm_pls_multi_te <- predict(bm_pls_multi_fit, biom_te[, -c(1, 6)])$variates |>
  as_tibble() |>
  rename_with(str_replace, pattern = "dim", replacement = "PLS")

# spls 1 outcome ---------------------------------------------------------------
bm_spls_fit <- spls(
  X = biom_tr[, -6],
  biom_tr[, 6],
  ncomp = 3,
  keepX = c(3, 3, 3),
  scale = TRUE
)

bm_spls_tr <- bm_spls_fit$variates$X |>
  as_tibble() |>
  rename_with(str_replace, pattern = "comp", replacement = "PLS")

bm_spls_te <- predict(bm_spls_fit, biom_te[, -6])$variates |>
  as_tibble() |>
  rename_with(str_replace, pattern = "dim", replacement = "PLS")

# spls 2 outcomes --------------------------------------------------------------
bm_spls_multi_fit <- spls(
  X = biom_tr[, -c(1, 6)],
  biom_tr[, c(1, 6)],
  ncomp = 3,
  keepX = c(3, 3, 3),
  scale = TRUE
)

bm_spls_multi_tr <- bm_spls_multi_fit$variates$X |>
  as_tibble() |>
  rename_with(str_replace, pattern = "comp", replacement = "PLS")

bm_spls_multi_te <- predict(bm_spls_multi_fit, biom_te[, -c(1, 6)])$variates |>
  as_tibble() |>
  rename_with(str_replace, pattern = "dim", replacement = "PLS")

# plsda 1 outcome --------------------------------------------------------------
cell_plsda_fit <- plsda(
  X = cell_tr[, -1],
  cell_tr[[1]],
  ncomp = 3,
  scale = TRUE
)

cell_plsda_tr <- cell_plsda_fit$variates$X |>
  as_tibble() |>
  rename_with(str_replace, pattern = "comp", replacement = "PLS")

cell_plsda_te <- predict(cell_plsda_fit, cell_te)$variates |>
  as_tibble() |>
  rename_with(str_replace, pattern = "dim", replacement = "PLS")

# splsda 1 outcome -------------------------------------------------------------
cell_splsda_fit <- splsda(
  X = cell_tr[, -1],
  cell_tr[[1]],
  ncomp = 3,
  keepX = c(50, 50, 50),
  scale = TRUE
)

cell_splsda_tr <- cell_splsda_fit$variates$X |>
  as_tibble() |>
  rename_with(str_replace, pattern = "comp", replacement = "PLS")

cell_splsda_te <- predict(cell_splsda_fit, cell_te)$variates |>
  as_tibble() |>
  rename_with(str_replace, pattern = "dim", replacement = "PLS")

# Saving -----------------------------------------------------------------------
save(
  bm_pls_tr,
  bm_pls_te,
  bm_pls_multi_tr,
  bm_pls_multi_te,
  bm_spls_tr,
  bm_spls_te,
  bm_spls_multi_tr,
  bm_spls_multi_te,
  cell_plsda_tr,
  cell_plsda_te,
  cell_splsda_tr,
  cell_splsda_te,
  file = testthat::test_path("test_pls_new.RData"),
  version = 2
)

Try the recipes package in your browser

Any scripts or data that you put into this service are public.

recipes documentation built on June 8, 2025, 10:21 a.m.