Nothing
#' @importFrom e1071 matchClasses
NULL
#' Discriminant analysis by Fisher Rule.
#'
#' Discriminant analysis by Fishers rule using the logratio approach to compositional data.
#'
#' The Fisher rule leads only to linear boundaries. However, this method allows
#' for dimension reduction and thus for a better visualization of the
#' separation boundaries. For the Fisher discriminant rule (Fisher, 1938; Rao,
#' 1948) the assumption of normal distribution of the groups is not explicitly
#' required, although the method looses its optimality in case of deviations
#' from normality.
#'
#' The classical Fisher discriminant rule is invariant to ilr coordinates and clr
#' coefficients. The robust rule is invariant to ilr transformations if
#' affine equivariant robust estimators of location and covariance are taken.
#'
#' Robustification is done (method \dQuote{robust}) by estimating the
#' columnwise means and the covariance by the Minimum Covariance Estimator.
#'
#' @aliases daFisher print.daFisher
#' @param x a matrix or data frame containing the explanatory variables
#' (training set)
#' @param grp grouping variable: a factor specifying the class for each
#' observation.
#' @param coda TRUE, when the underlying data are compositions.
#' @param method \dQuote{classical} or \dQuote{robust} estimation.
#' @param plotScore TRUE, if the scores should be plotted automatically.
#' @param ... additional arguments for the print method passed through
#' @importFrom e1071 matchClasses
#' @return an object of class \dQuote{daFisher} including the following
#' elements
#' \item{B }{Between variance of the groups}
#' \item{W }{Within variance
#' of the groups}
#' \item{loadings}{loadings}
#' \item{scores}{fisher scores}
#' \item{mc}{table indicating misclassifications}
#' \item{mcrate}{misclassification rate}
#' \item{coda}{coda}
#' \item{grp}{grouping}
#' \item{grppred}{predicted groups}
#' \item{xc}{xc}
#' \item{meanj}{meanj}
#' \item{cv}{cv}
#' \item{pj}{pj}
#' \item{meanov}{meanov}
#' \item{fdiscr}{fdiscr}
#' @author Peter Filzmoser, Matthias Templ.
#' @seealso \code{\link[rrcov]{Linda}}
#' @references Filzmoser, P. and Hron, K. and Templ, M. (2012)
#' Discriminant analysis for compositional data and robust parameter estimation.
#' \emph{Computational Statistics}, 27(4), 585-604.
#'
#' Fisher, R. A. (1938) The statistical utiliziation of multiple measurements.
#' \emph{Annals of Eugenics}, 8, 376-386.
#'
#' Rao, C.R. (1948) The utilization of multiple measurements in problems of
#' biological classification. \emph{Journal of the Royal Statistical Society},
#' Series B, 10, 159-203.
#' @keywords multivariate
#' @export
#' @import rrcov MASS
#' @examples
#' ## toy data (non-compositional)
#' require(MASS)
#' x1 <- mvrnorm(20,c(0,0,0),diag(3))
#' x2 <- mvrnorm(30,c(3,0,0),diag(3))
#' x3 <- mvrnorm(40,c(0,3,0),diag(3))
#' X <- rbind(x1,x2,x3)
#' grp=c(rep(1,20),rep(2,30),rep(3,40))
#'
#' #par(mfrow=c(1,2))
#' d1 <- daFisher(X,grp=grp,method="classical",coda=FALSE)
#' d2 <- daFisher(X,grp=grp,method="robust",coda=FALSE)
#' d2
#' summary(d2)
#' predict(d2, newdata = X)
#'
#' ## example with olive data:
#'\dontrun{
#' data(olive, package = "RnavGraph")
#' # exclude zeros (alternatively impute them if
#' # the detection limit is known using impRZilr())
#' ind <- which(olive == 0, arr.ind = TRUE)[,1]
#' olives <- olive[-ind, ]
#' x <- olives[, 4:10]
#' grp <- olives$Region # 3 groups
#' res <- daFisher(x,grp)
#' res
#' summary(res)
#' res <- daFisher(x, grp, plotScore = TRUE)
#' res <- daFisher(x, grp, method = "robust")
#' res
#' summary(res)
#' predict(res, newdata = x)
#' res <- daFisher(x,grp, plotScore = TRUE, method = "robust")
#'
#' # 9 regions
#' grp <- olives$Area
#' res <- daFisher(x, grp, plotScore = TRUE)
#' res
#' summary(res)
#' predict(res, newdata = x)
#' }
daFisher <- function(x, grp, coda=TRUE,
method = "classical",
# rule="fisher",
plotScore = FALSE, ...){
## some checks
clInfo <- class(x)[1]
if(clInfo == "data.frame") x <- as.matrix(x)
## Fisher LDA:
if(length(grp) != dim(x)[1]){
stop(paste("grp must be of length", dim(x)[1]))
}
if(dim(x)[2] < 1){
stop("matrix or data.frame expected.")
}
if(coda){
x <- pivotCoord(x)
}
n <- nrow(x)
p <- ncol(x)
grp <- as.factor(grp)
glev <- levels(grp)
g <- length(glev)
pj <- rep(NA,g)
meanj <- matrix(NA,nrow=p,ncol=g)
cv <- list()
for (j in 1:g){
pj[j] <- sum(grp==glev[j])/n
if(method == "classical"){
meanj[,j] <- apply(x[grp==glev[j],],2,mean)
cv[[j]] <- cov(x[grp==glev[j],])
} else {
robcov <- covMcd(x[grp==glev[j],])
meanj[,j] <- robcov$center
cv[[j]] <- robcov$cov
# else {
# # require(rrcov)
# res <- by(x,factor(grp),CovMcd)
# muil <- lapply(res,getCenter)
# sigil <- lapply(res,getCov)
# }
}
}
# if(rule=="lda"){
# if(method=="robust"){
# res <- Linda(x, grp)
# }
# else
# res <- lda(x, grp)
# }
# else if(rule=="qda"){
# res <- qda(x, grp)
# }
# else{
###meanov <- t(t(meanj)*pj)
meanov <- meanj%*%pj
B <- matrix(0,p,p)
W <- matrix(0,p,p)
for (j in 1:g){
###B <- B+pj[j]*((meanj-meanov)%*%t(meanj-meanov))
B <- B+pj[j]*((meanj-meanov%*%rep(1,g))%*%t(meanj-meanov%*%rep(1,g)))
# W <- W+pj[j]*cov(x[grp==glev[j],])
W <- W+pj[j]*cv[[j]]
}
l <- min(g-1,p) # use this number of components
#V=matrix(Re(eigen(solve(W)%*%B)$vec)[,1:l],ncol=l)
#V=t(t(V)/(sqrt(diag(t(V)%*%W%*%V))))
# besser:
B.svd <- svd(B)
l1 <- length(B.svd$d>1e-6)
B12 <- B.svd$u[, 1:l1] %*% diag(sqrt(B.svd$d[1:l1])) %*% t(B.svd$u[, 1:l1])
Bm12 <- B.svd$u[, 1:l1] %*% diag(1/sqrt(B.svd$d[1:l1])) %*% t(B.svd$u[, 1:l1])
K <- eigen(B12 %*% solve(W) %*% t(B12))
l2 <- min(g - 1, p)
l <- min(length(K$val>1e-6),l2)
Vs <- Bm12%*%K$vec[,1:l]
V <- t(t(Vs)/(sqrt(diag(t(Vs)%*%W%*%Vs))))
# Fisher scores
fs <- matrix(NA,nrow=n,ncol=g)
dimnames(fs)[[2]] <- glev
for (j in 1:g){
xc <- scale(x,meanj[,j],scale=FALSE)
xproj <- xc%*%V
fs[,j] <- sqrt(apply(xproj^2,1,sum)-2*log(pj[j]))
}
## prediction:
grppred <- glev[apply(fs, 1, which.min)]
## misclassification rate:
mc <- table(grp, grppred)
mc <- mc[, matchClasses(mc, method = "exact")]
rate <- 1 - sum(diag(mc)) / sum(mc)
fdiscr <- scale(x,meanov,FALSE)%*%V[,1:2] # discriminant scores
## plot scores (if TRUE)
if(plotScore){
#proj <- xc %*%V [,1:2]
###proj <- fs[,1:2]
proj <- data.frame(fdiscr)
proj$grp <- as.factor(grp)
proj$grppred <- as.factor(grppred)
firstscores <- NULL
secondscores <- NULL
colnames(proj) <- c("firstscores", "secondscores","grp", "grppred")
gg <- ggplot(proj, aes(firstscores, secondscores, colour = grp, shape = grppred))
gg <- gg + geom_point()
gg <- gg + xlab("First Fisher scores") + ylab("Second Fisher scores")
print(gg)
# plot(, col=grp, pch=grppred,
# xlab="first fisher scores", ylab="second fisher scores")
# }
}
res <- list(B = B, W = W, loadings = V, scores = fs, mc = mc, mcrate = rate,
coda=coda, grp=grp, grppred=grppred, xc=xc, meanj=meanj, cv=cv,
pj=pj, meanov=meanov, fdiscr = fdiscr)
class(res) <- "daFisher"
res
}
# daFisher <- function(x, grp, coda=TRUE,
# method = "classical",
# plotScore = FALSE){
# ## some checks
# if(clInfo == "data.frame") x <- as.matrix(x)
# ## Fisher LDA:
# if(length(grp) != dim(x)[1]){
# stop(paste("grp must be of length", dim(x)[1]))
# }
# if(dim(x)[2] < 1){
# stop("matrix or data.frame expected.")
# }
# if(coda){
# x <- pivotCoord(x)
# }
# n <- nrow(x)
# p <- ncol(x)
# glev <- unique(grp)
# g <- length(glev)
# pj <- rep(NA,g)
# meanj <- matrix(NA,nrow=p,ncol=g)
# cv <- list()
# for (j in 1:g){
# pj[j] <- sum(grp==glev[j])/n
# if(method == "classical"){
# meanj[,j] <- apply(x[grp==glev[j],],2,mean)
# cv[[j]] <- cov(x[grp==glev[j],])
# } else {
# robcov <- covMcd(x[grp==glev[j],])
# meanj[,j] <- robcov$center
# cv[[j]] <- robcov$cov
# # else {
# # # require(rrcov)
# # res <- by(x,factor(grp),CovMcd)
# # muil <- lapply(res,getCenter)
# # sigil <- lapply(res,getCov)
# # }
# }
# }
#
# meanov <- t(t(meanj)*pj)
# B <- matrix(0,p,p)
# W <- matrix(0,p,p)
# for (j in 1:g){
# B <- B+pj[j]*((meanj-meanov)%*%t(meanj-meanov))
# # W <- W+pj[j]*cov(x[grp==glev[j],])
# W <- W+pj[j]*cv[[j]]
# }
# l <- min(g-1,p) # use this number of components
# #V=matrix(Re(eigen(solve(W)%*%B)$vec)[,1:l],ncol=l)
# #V=t(t(V)/(sqrt(diag(t(V)%*%W%*%V))))
#
# # besser:
# B.svd <- svd(B)
# B12 <- B.svd$u[,1:l]%*%diag(sqrt(B.svd$d[1:l]))%*%t(B.svd$u[,1:l])
# Bm12 <- B.svd$u[,1:l]%*%diag(1/sqrt(B.svd$d[1:l]))%*%t(B.svd$u[,1:l])
# K <- eigen(B12%*%solve(W)%*%B12)
# Vs <- Bm12%*%K$vec[,1:l]
# V <- t(t(Vs)/(sqrt(diag(t(Vs)%*%W%*%Vs))))
#
#
# # Fisher scores
# fs=matrix(NA,nrow=n,ncol=g)
# for (j in 1:g){
# xc <- scale(x,meanj[,j],scale=FALSE)
# xproj <- xc%*%V
# fs[,j] <- sqrt(apply(xproj^2,1,sum)-2*log(pj[j]))
# }
#
# ## predition:
# grppred <- apply(fs, 1, which.min)
#
# ## misclassification rate:
# mc <- table(grp, grppred)
# mc <- mc[, matchClasses(mc, method = "exact")]
# rate <- 1 - sum(diag(mc)) / sum(mc)
#
# ## plot scores (if TRUE)
# if(plotScore){
# #proj <- xc %*%V [,1:2]
# proj <- fs[,1:2]
# proj <- data.frame(proj)
# proj$grp <- as.factor(grp)
# proj$grppred <- as.factor(grppred)
# firstscores <- NULL
# secondscores <- NULL
# colnames(proj) <- c("firstscores", "secondscores","grp", "grppred")
# gg <- ggplot(proj, aes(firstscores, secondscores, colour = grp, shape = grppred))
# gg <- gg + geom_point()
# gg <- gg + xlab("first fisher scores") + ylab("second fisher scores")
# print(gg)
# # plot(, col=grp, pch=grppred,
# # xlab="first fisher scores", ylab="second fisher scores")
# }
#
# res <- list(B = B,
# W = W,
# loadings = V,
# scores = fs,#classification=postgroup,
# # mu=muil,
# # sigma=sigil,
# mc = mc,
# mcrate = rate,
# coda=coda,
# grp=grp, grppred=grppred, xc=xc)
# class(res) <- "daFisher"
#
#
# res
# }
#' @rdname daFisher
#' @method print daFisher
#' @export
print.daFisher <- function(x,...){
cat("--------------------------------------")
cat("\nResults from Fishers discriminant analysis, coda ==", x$coda)
cat("\n- Variance between the classes: \n")
print(x$B)
cat("\n- Variance within the classes: \n")
print(x$W)
cat("\n- Loadings matrix: \n")
print(x$load)
cat("--------------------------------------\n")
}
#' @rdname daFisher
#' @method predict daFisher
#' @param object object of class \dQuote{daFisher}
#' @param newdata new data in the appropriate form (CoDa, etc)
#' @export
predict.daFisher <- function(object, ..., newdata){
# res ... result object of daFisher
# newdata ... new data in the appropriate form (CoDa, etc)
g <- ncol(object$meanj) # number of groups
if (object$coda){
newdata <- pivotCoord(newdata)
}
# Fisher scores
fs <- matrix(NA,nrow=nrow(newdata),ncol=g)
dimnames(fs)[[2]] <- dimnames(object$mc)[[1]]
for (j in 1:g){
xc <- scale(newdata,object$meanj[,j],scale=FALSE)
xproj <- xc%*%object$loadings
fs[,j] <- sqrt(apply(xproj^2,1,sum)-2*log(object$pj[j]))
}
## prediction:
grp <- apply(fs, 1, which.min)
grpnam <- colnames(fs)[grp]
list(grpnam=grpnam,grp=grp)
}
#' @rdname daFisher
#' @method summary daFisher
#' @export
summary.daFisher <- function(object, ...){
cat("--------------------------------------")
cat("\nMisclassification rate from Fishers discriminant analysis, coda ==", object$coda)
cat("\n")
print(object$mcrate)
cat("\n--------------------------------------")
cat("\nMisclassifications from Fishers discriminant analysis, coda ==", object$coda)
cat("\n")
print(object$mc)
cat("\n--------------------------------------\n")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.