Nothing
#' Monte Carlo Cross-Validation
#'
#' One resample of Monte Carlo cross-validation takes a random sample (without
#' replacement) of the original data set to be used for analysis. All other
#' data points are added to the assessment set.
#' @template strata_details
#' @inheritParams vfold_cv
#' @inheritParams make_strata
#' @param prop The proportion of data to be retained for modeling/analysis.
#' @param times The number of times to repeat the sampling.
#' @export
#' @return An tibble with classes `mc_cv`, `rset`, `tbl_df`, `tbl`, and
#' `data.frame`. The results include a column for the data split objects and a
#' column called `id` that has a character string with the resample identifier.
#' @examplesIf rlang::is_installed("modeldata")
#' mc_cv(mtcars, times = 2)
#' mc_cv(mtcars, prop = .5, times = 2)
#'
#' library(purrr)
#' data(wa_churn, package = "modeldata")
#'
#' set.seed(13)
#' resample1 <- mc_cv(wa_churn, times = 3, prop = .5)
#' map_dbl(
#' resample1$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#'
#' set.seed(13)
#' resample2 <- mc_cv(wa_churn, strata = churn, times = 3, prop = .5)
#' map_dbl(
#' resample2$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#'
#' set.seed(13)
#' resample3 <- mc_cv(wa_churn, strata = tenure, breaks = 6, times = 3, prop = .5)
#' map_dbl(
#' resample3$splits,
#' function(x) {
#' dat <- as.data.frame(x)$churn
#' mean(dat == "Yes")
#' }
#' )
#' @export
mc_cv <- function(data, prop = 3 / 4, times = 25,
strata = NULL, breaks = 4, pool = 0.1, ...) {
check_dots_empty()
if (!missing(strata)) {
strata <- tidyselect::vars_select(names(data), !!enquo(strata))
if (length(strata) == 0) strata <- NULL
}
strata_check(strata, data)
split_objs <-
mc_splits(
data = data,
prop = prop,
times = times,
strata = strata,
breaks = breaks,
pool = pool
)
## We remove the holdout indices since it will save space and we can
## derive them later when they are needed.
split_objs$splits <- map(split_objs$splits, rm_out)
if (!is.null(strata)) names(strata) <- NULL
mc_att <- list(
prop = prop,
times = times,
strata = strata,
breaks = breaks,
pool = pool
)
new_rset(
splits = split_objs$splits,
ids = split_objs$id,
attrib = mc_att,
subclass = c("mc_cv", "rset")
)
}
# Get the indices of the assessment set from the analysis set
mc_complement <- function(ind, n) {
list(
analysis = ind,
assessment = setdiff(1:n, ind)
)
}
mc_splits <- function(data, prop = 3 / 4, times = 25,
strata = NULL, breaks = 4, pool = 0.1) {
if (!is.numeric(prop) | prop >= 1 | prop <= 0) {
rlang::abort("`prop` must be a number on (0, 1).")
}
n <- nrow(data)
if (is.null(strata)) {
indices <- purrr::map(rep(n, times), sample, size = floor(n * prop))
} else {
stratas <- tibble::tibble(
idx = 1:n,
strata = make_strata(getElement(data, strata),
breaks = breaks,
pool = pool
)
)
stratas <- split_unnamed(stratas, stratas$strata)
stratas <-
purrr::map(stratas, strat_sample, prop = prop, times = times) %>%
list_rbind()
indices <- split_unnamed(stratas$idx, stratas$rs_id)
}
indices <- lapply(indices, mc_complement, n = n)
split_objs <-
purrr::map(indices, make_splits, data = data, class = "mc_split")
list(
splits = split_objs,
id = names0(length(split_objs), "Resample")
)
}
strat_sample <- function(x, prop, times, ...) {
n <- nrow(x)
idx <- purrr::map(rep(n, times), sample, size = floor(n * prop), ...)
out <- purrr::map(idx, function(ind, x) x[sort(ind), "idx"], x = x) %>%
list_rbind()
out$rs_id <- rep(1:times, each = floor(n * prop))
out
}
#' Group Monte Carlo Cross-Validation
#'
#' Group Monte Carlo cross-validation creates splits of the data based
#' on some grouping variable (which may have more than a single row
#' associated with it). One resample of Monte Carlo cross-validation takes a
#' random sample (without replacement) of groups in the original data set to be
#' used for analysis. All other data points are added to the assessment set.
#' A common use of this kind of resampling is when you have
#' repeated measures of the same subject.
#'
#' @inheritParams mc_cv
#' @inheritParams make_groups
#' @export
#' @return A tibble with classes `group_mc_cv`,
#' `rset`, `tbl_df`, `tbl`, and `data.frame`.
#' The results include a column for the data split objects and an
#' identification variable.
#' @examplesIf rlang::is_installed("modeldata")
#' data(ames, package = "modeldata")
#'
#' set.seed(123)
#' group_mc_cv(ames, group = Neighborhood, times = 5)
#'
#' @export
group_mc_cv <- function(data, group, prop = 3 / 4, times = 25, ...,
strata = NULL, pool = 0.1) {
check_dots_empty()
group <- validate_group({{ group }}, data)
if (!missing(strata)) {
strata <- check_grouped_strata({{ group }}, {{ strata }}, pool, data)
}
split_objs <-
group_mc_splits(
data = data,
group = group,
prop = prop,
times = times,
strata = strata,
pool = pool
)
# This is needed for printing checks; strata can't be missing for mc_cv
if (is.null(strata)) strata <- FALSE
## We remove the holdout indices since it will save space and we can
## derive them later when they are needed.
split_objs$splits <- map(split_objs$splits, rm_out)
mc_att <- list(
group = group,
prop = prop,
times = times,
balance = "prop",
strata = strata,
pool = pool
)
new_rset(
splits = split_objs$splits,
ids = split_objs$id,
attrib = mc_att,
subclass = c("group_mc_cv", "mc_cv", "group_rset", "rset")
)
}
group_mc_splits <- function(data, group, prop = 3 / 4, times = 25, strata = NULL, pool = 0.1) {
group <- getElement(data, group)
if (!is.null(strata)) {
strata <- getElement(data, strata)
strata <- as.character(strata)
strata <- make_strata(strata, pool = pool)
}
n <- nrow(data)
indices <- make_groups(
data,
group,
times,
balance = "prop",
prop = prop,
replace = FALSE,
strata = strata
)
indices <- lapply(indices, mc_complement, n = n)
split_objs <-
purrr::map(
indices,
make_splits,
data = data,
class = c("grouped_mc_split", "mc_split")
)
all_assessable <- purrr::map(split_objs, function(x) nrow(assessment(x)))
if (any(all_assessable == 0)) {
rlang::abort(
c(
"Some assessment sets contained zero rows",
i = "Consider using a non-grouped resampling method"
),
call = rlang::caller_env()
)
}
list(
splits = split_objs,
id = names0(length(split_objs), "Resample")
)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.